diff --git a/RWKV-v4neo/src/model.py b/RWKV-v4neo/src/model.py index cd7cced..658b93d 100644 --- a/RWKV-v4neo/src/model.py +++ b/RWKV-v4neo/src/model.py @@ -2,7 +2,7 @@ # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## -import os, math, gc +import os, math, gc, time from re import L import torch import torch.nn as nn @@ -265,7 +265,7 @@ class RWKV(pl.LightningModule): {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0}, ] if self.deepspeed_offload: - return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False) + return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False) return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False) @property @@ -310,14 +310,26 @@ class RWKV(pl.LightningModule): return x def training_step(self, batch, batch_idx): + args = self.args idx, targets = batch logits = self(idx) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - self.trainer.my_loss = loss.item() - self.trainer.my_epoch_loss = loss.item() - self.log("lr", self.trainer.my_lr, prog_bar=True, on_step=True) - self.log("loss", self.trainer.my_epoch_loss, prog_bar=True, on_step=True) + if self.trainer.global_rank == 0: + t_now = time.time_ns() + try: + t_cost = (t_now - self.trainer.my_time_ns) / 1e9 + self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True) + self.log("token/s", args.ctx_len * float(args.devices) * args.micro_bsz / t_cost, prog_bar=True, on_step=True) + except: + pass + self.trainer.my_time_ns = t_now + self.trainer.my_loss = loss.item() + self.trainer.my_loss_sum += self.trainer.my_loss + self.trainer.my_loss_count += 1 + self.trainer.my_epoch_loss = self.trainer.my_loss_sum / self.trainer.my_loss_count + self.log("lr", self.trainer.my_lr, prog_bar=True, on_step=True) + self.log("loss", self.trainer.my_epoch_loss, prog_bar=True, on_step=True) return L2Wrap.apply(loss, logits) diff --git a/RWKV-v4neo/train.py b/RWKV-v4neo/train.py index 0ff754e..397303c 100644 --- a/RWKV-v4neo/train.py +++ b/RWKV-v4neo/train.py @@ -3,8 +3,8 @@ ######################################################################################################## if __name__ == "__main__": - print("\n!!! NOTE: THIS IS STILL WIP (and a bit slower than RWKV-4) !!!\n") - import os, warnings, math, datetime + print("\n!!! NOTE: THIS IS STILL WIP !!!\n") + import os, warnings, math, datetime, sys import numpy as np from argparse import ArgumentParser import torch @@ -16,31 +16,60 @@ if __name__ == "__main__": from pytorch_lightning.callbacks import TQDMProgressBar from pytorch_lightning import Callback - seed_everything(42) + # print("WARNING: THIS IS ONLY FOR DEBUG") + # seed_everything(42) + np.set_printoptions(precision=4, suppress=True, linewidth=200) warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*") warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*") ######################################################################################################## + # example: train a simple L6-D512 RWKV from scratch + # + # python train.py --load_model "" --wandb "" --proj_dir "out" \ + # --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \ + # --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \ + # --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \ + # --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \ + # --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0 + + # example: fine-tune RWKV 1.5B using 8xA100 40G + # + # python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \ + # --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \ + # --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \ + # --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \ + # --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \ + # --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0 + + # example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow + # + # python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \ + # --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \ + # --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \ + # --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \ + # --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \ + # --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1 + parser = ArgumentParser() parser = Trainer.add_argparse_args(parser) parser.add_argument("--load_model", default="", type=str) - parser.add_argument("--wandb", default="", type=str) + parser.add_argument("--wandb", default="", type=str) # wandb project name parser.add_argument("--proj_dir", default="out", type=str) parser.add_argument("--data_file", default="", type=str) parser.add_argument("--data_type", default="utf-8", type=str) - parser.add_argument("--vocab_size", default=0, type=int) + parser.add_argument("--vocab_size", default=0, type=int) # vocab_size = 0 means auto (for char-level LM and .txt data) parser.add_argument("--ctx_len", default=1024, type=int) - parser.add_argument("--epoch_steps", default=1000, type=int) + parser.add_argument("--epoch_steps", default=1000, type=int) # a mini "epoch" has xxx steps parser.add_argument("--epoch_count", default=500, type=int) parser.add_argument("--epoch_begin", default=0, type=int) parser.add_argument("--epoch_save", default=5, type=int) - parser.add_argument("--micro_bsz", default=12, type=int) + parser.add_argument("--micro_bsz", default=12, type=int) # micro batch size (batch size per GPU) parser.add_argument("--n_layer", default=6, type=int) parser.add_argument("--n_embd", default=512, type=int) parser.add_argument("--pre_ffn", default=0, type=int) @@ -53,17 +82,15 @@ if __name__ == "__main__": parser.add_argument("--beta2", default=0.99, type=float) parser.add_argument("--adam_eps", default=1e-8, type=float) - parser.add_argument("--grad_cp", default=0, type=int) - parser.add_argument("--data_workers", default=1, type=int) + parser.add_argument("--grad_cp", default=0, type=int) # gradient checkpt: saves VRAM, but slower args = parser.parse_args() - + args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S") args.enable_checkpointing = False args.logger = False args.gradient_clip_val = 1.0 args.num_sanity_val_steps = 0 args.check_val_every_n_epoch = int(1e20) - args.auto_select_gpus = True args.log_every_n_steps = int(1e20) args.max_epochs = -1 # continue forever args.betas = (args.beta1, args.beta2) @@ -74,7 +101,7 @@ if __name__ == "__main__": f""" ############################################################################ # -# RWKV-4 {args.precision.upper()} on {args.devices} x {args.accelerator.upper()} {args.strategy.upper()} {'with grad_cp' if args.grad_cp > 0 else ''} +# RWKV-4 {args.precision.upper()} on {args.devices} x {args.accelerator.upper()}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''} # # Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir} # @@ -86,9 +113,9 @@ if __name__ == "__main__": # # Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, β {args.betas}, eps {args.adam_eps} # -# torch {torch.__version__}, recommend 1.12.1+cu116 or newer -# deepspeed {deepspeed.__version__}, recommend 0.7.2 or newer -# pytorch_lightning {pl.__version__}, recommend 1.7.4 or newer +# Found torch {torch.__version__}, recommend 1.12.1+cu116 or newer +# Found deepspeed {deepspeed.__version__}, recommend 0.7.2 or newer +# Found pytorch_lightning {pl.__version__}, recommend 1.7.4 or newer # ############################################################################ """ @@ -102,7 +129,7 @@ if __name__ == "__main__": assert len(args.data_file) > 0 if args.lr_final == 0 or args.lr_init == 0: - rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule.\n\n") + rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n") assert args.precision in ["fp32", "tf32", "fp16", "bf16"] os.environ["RWKV_FLOAT_MODE"] = args.precision @@ -142,8 +169,15 @@ if __name__ == "__main__": # logging if trainer.global_rank == 0: if g_step == 0: + trainer.my_loss_sum = 0 + trainer.my_loss_count = 0 trainer.my_log = open(args.proj_dir + "/train_log.txt", "a") - trainer.my_log.write(f"NEW RUN {datetime.datetime.now()}\n{vars(self.args)}\n") + trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n") + try: + print(f"\n{trainer.strategy.config}\n") + trainer.my_log.write(f"{trainer.strategy.config}\n") + except: + pass trainer.my_log.flush() if len(args.wandb) > 0: print("Login to wandb...") @@ -152,7 +186,7 @@ if __name__ == "__main__": model_name = str(args.vocab_size) + "-" + str(args.ctx_len) + "-" + str(args.n_layer) + "-" + str(args.n_embd) wandb.init( project=args.wandb, - name=model_name + "-" + datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S"), + name=model_name + "-" + args.my_timestamp, config=args, save_code=False, ) @@ -198,6 +232,9 @@ if __name__ == "__main__": trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n") trainer.my_log.flush() + trainer.my_loss_sum = 0 + trainer.my_loss_count = 0 + @rank_zero_only def generate_init_weight(model, temp_name): try: @@ -232,5 +269,5 @@ if __name__ == "__main__": callbacks=[train_callback(args)], ) - train_loader = DataLoader(train_data, batch_size=args.micro_bsz, num_workers=args.data_workers) + train_loader = DataLoader(train_data, batch_size=args.micro_bsz, num_workers=1) trainer.fit(model, train_loader)