From bbd6e2223b59093cf852a60784b0ee54a4362fe2 Mon Sep 17 00:00:00 2001 From: PENG Bo <33809201+BlinkDL@users.noreply.github.com> Date: Tue, 17 May 2022 04:27:17 +0800 Subject: [PATCH] Update README.md --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 92078d7..250a8a2 100644 --- a/README.md +++ b/README.md @@ -18,7 +18,7 @@ All of the trained models will be open-source. Inference is very fast (only matr Check https://github.com/BlinkDL/RWKV-v2-RNN-Pile for L24-D1024 and L12-D768 models trained on the Pile (and the latest code). It's very fast on CPU (the default mode). -Read the inference code in https://github.com/BlinkDL/RWKV-v2-RNN-Pile/blob/main/src/model.py and try using the final hidden state(.xx .aa .bb) for other tasks. +Read the inference code in https://github.com/BlinkDL/RWKV-v2-RNN-Pile/blob/main/src/model.py and try using the final hidden state(.xx .aa .bb) as a faithful sentence embedding for other tasks. See the release here for a 27M params model on enwik8 with 0.72 BPC(dev). Run run.py in https://github.com/BlinkDL/RWKV-LM/tree/main/RWKV-v2-RNN. @@ -52,11 +52,11 @@ Here R, K, V are trainable matrices, and W is a trainable vector (time-decay fac In GPT, the contribution of F[i] to F[t+1] is weighted by ![ \exp (\mathbf{Q}x[\mathrm{t}] * \mathbf{K}F[\mathrm{i}]) ](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle++%5Cexp+%28%5Cmathbf%7BQ%7Dx%5B%5Cmathrm%7Bt%7D%5D+%2A+%5Cmathbf%7BK%7DF%5B%5Cmathrm%7Bi%7D%5D%29+). In RWKV-2, the contribution of F[i] to F[t+1] is weighted by ![\sigma(\mathbf{R}x[\mathrm{t}]) \cdot \exp (\mathbf{W} \cdot(\mathrm{t}-\mathrm{i})) \cdot \exp (\mathbf{K}F[\mathrm{i}]) ](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Csigma%28%5Cmathbf%7BR%7Dx%5B%5Cmathrm%7Bt%7D%5D%29+%5Ccdot+%5Cexp+%28%5Cmathbf%7BW%7D+%5Ccdot%28%5Cmathrm%7Bt%7D-%5Cmathrm%7Bi%7D%29%29+%5Ccdot+%5Cexp+%28%5Cmathbf%7BK%7DF%5B%5Cmathrm%7Bi%7D%5D%29+). -* Here ![\sigma](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Csigma) is a non-linearity and we can use sigmoid. +* The ![\sigma](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Csigma) is a non-linearity and we can use sigmoid. * Note ![\sigma(\mathbf{R}x[\mathrm{t}])](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Csigma%28%5Cmathbf%7BR%7Dx%5B%5Cmathrm%7Bt%7D%5D%29) is not in the denominator, and I call R the "receptance". -* Here ![\exp (\mathbf{W} \cdot(\mathrm{t}-\mathrm{i}))](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Cexp+%28%5Cmathbf%7BW%7D+%5Ccdot%28%5Cmathrm%7Bt%7D-%5Cmathrm%7Bi%7D%29%29) is the time-decay factor. I proposed the same idea (scaling the attention by distance) in Aug 2020 and called it the "time-weighting" (check the commit history of https://github.com/BlinkDL/minGPT-tuned). +* The ![\exp (\mathbf{W} \cdot(\mathrm{t}-\mathrm{i}))](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+%5Cexp+%28%5Cmathbf%7BW%7D+%5Ccdot%28%5Cmathrm%7Bt%7D-%5Cmathrm%7Bi%7D%29%29) is the time-decay factor. I proposed the same idea (scaling the attention by distance) in Aug 2020 and called it the "time-weighting" (check the commit history of https://github.com/BlinkDL/minGPT-tuned). -Now here is the punchline: we can rewrite it into a RNN (recursive formula). Note: +Here comes the punchline: we can rewrite it into a RNN (recursive formula). Note: ![F[1]=\sigma(\mathbf{R }x[0]) \cdot \frac{ \exp (\mathbf{K }F[0]) \cdot(\mathbf{V }F[0])}{\exp (\mathbf{K }F[0])}](https://render.githubusercontent.com/render/math?math=%5Ccolor%7Bblack%7D%5Cdisplaystyle+F%5B1%5D%3D%5Csigma%28%5Cmathbf%7BR+%7Dx%5B0%5D%29+%5Ccdot+%5Cfrac%7B+%5Cexp+%28%5Cmathbf%7BK+%7DF%5B0%5D%29+%5Ccdot%28%5Cmathbf%7BV+%7DF%5B0%5D%29%7D%7B%5Cexp+%28%5Cmathbf%7BK+%7DF%5B0%5D%29%7D)