From f38b7e35743dfccd74ec63a55a2f7c41a59e2dcf Mon Sep 17 00:00:00 2001 From: PENG Bo <33809201+BlinkDL@users.noreply.github.com> Date: Wed, 1 Mar 2023 16:51:38 +0800 Subject: [PATCH] Update README.md --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d78065a..c4e22dc 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,8 @@ RWKV is a RNN with Transformer-level LLM performance, which can also be directly So it's combining the best of RNN and transformer - **great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding** (using the final hidden state). +**RWKV pip package**: https://pypi.org/project/rwkv/ + **Download RWKV-4 0.1/0.4/1.5/3/7/14B weights**: https://huggingface.co/BlinkDL **RWKV in 150 lines** (model, inference, text generation): https://github.com/BlinkDL/ChatRWKV/blob/main/RWKV_in_150_lines.py @@ -14,7 +16,7 @@ So it's combining the best of RNN and transformer - **great performance, fast in ``` os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) -from rwkv.model import RWKV # everything in /v2/rwkv folder +from rwkv.model import RWKV # pip install rwkv model = RWKV(model='/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-1b5/RWKV-4-Pile-1B5-20220903-8040', strategy='cuda fp16') out, state = model.forward([187, 510, 1563, 310, 247], None) # use 20B_tokenizer.json