######################################################################################################## # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## import numpy as np import math, os import time import types import copy import torch from torch.nn import functional as F from src.utils import TOKENIZER, Dataset torch.backends.cudnn.benchmark = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True np.set_printoptions(precision=4, suppress=True, linewidth=200) ######################################################################################################## # Step 1: set model # # Set TOKEN_MODE to 'char' or 'bpe' if the model is trained by 'train.py' from scratch. # # Set TOKEN_MODE to 'pile' if you want to test pre-trained pile models. ######################################################################################################## TOKEN_MODE = 'char' # char / bpe / pile n_layer = 6 n_embd = 512 ctx_len = 1024 if TOKEN_MODE == 'char': MODEL_NAME = 'trained-500' # your trained model WORD_NAME = 'vocab' # the .json vocab (generated by train.py) # set UNKNOWN_CHAR to the rarest token in your vocab.json, and all unknown tokens in your prompt will be denoted by it UNKNOWN_CHAR = ' ' # here we just set it to ' ' for simplicity elif TOKEN_MODE == 'bpe': MODEL_NAME = 'trained-500' # your trained model WORD_NAME = ['model-vocab.json', 'model-merges.txt'] # [vocab, merge] for your BPE model UNKNOWN_CHAR = None elif TOKEN_MODE == 'pile': WORD_NAME = ['20B_tokenizer.json', '20B_tokenizer.json'] UNKNOWN_CHAR = None #---> you can set MODEL_NAME to your fine-tuned model <--- MODEL_NAME = 'RWKV-4-Pile-169M-20220807-8023' # MODEL_NAME = 'trained-11' n_layer = 12 n_embd = 768 ctx_len = 1024 # MODEL_NAME = 'RWKV-4-Pile-430M-20220808-8066' # n_layer = 24 # n_embd = 1024 # ctx_len = 1024 # MODEL_NAME = 'RWKV-4-Pile-1B5-20220903-8040' # n_layer = 24 # n_embd = 2048 # ctx_len = 1024 os.environ['RWKV_FLOAT_MODE'] = 'fp32' # 'bf16' / 'fp16' / 'fp32' (note: only using fp32 at this moment) os.environ['RWKV_RUN_DEVICE'] = 'cpu' # 'cpu' (already very fast) or 'cuda' model_type = 'RWKV' # 'RWKV' or 'RWKV-ffnPre' ######################################################################################################## # Step 2: set prompt & sampling stuffs ######################################################################################################## # context = 'A' # context = "\nIn the" # context = '\nSugar:' context = '\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.' NUM_TRIALS = 999 LENGTH_PER_TRIAL = 333 TEMPERATURE = 1.0 top_p = 0.7 top_p_newline = 0.9 # only used in TOKEN_MODE = char DEBUG_DEBUG = False # True False --> show softmax output ######################################################################################################## print(f'Loading {MODEL_NAME}...') from src.model_run import RWKV_RNN model = RWKV_RNN(MODEL_NAME, os.environ['RWKV_RUN_DEVICE'], model_type, n_layer, n_embd, ctx_len) tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR) ######################################################################################################## if tokenizer.charMode: context = tokenizer.refine_context(context) ctx = [tokenizer.stoi.get(s, tokenizer.UNKNOWN_CHAR) for s in context] else: ctx = tokenizer.tokenizer.encode(context) src_len = len(ctx) src_ctx = ctx.copy() print('\nYour prompt has ' + str(src_len) + ' tokens.') print('\n--> Currently the first run takes a while if your prompt is long, as we are using RNN to process the prompt. Use GPT to build the hidden state for better speed. <--\n') for TRIAL in range(1 if DEBUG_DEBUG else NUM_TRIALS): t_begin = time.time_ns() print(('-' * 30) + context, end='') ctx = src_ctx.copy() model.clear() if TRIAL == 0: init_state = types.SimpleNamespace() for i in range(src_len): x = ctx[:i+1] if i == src_len - 1: init_state.out = model.run(x) else: model.run(x) model.save(init_state) else: model.load(init_state) for i in range(src_len, src_len + (1 if DEBUG_DEBUG else LENGTH_PER_TRIAL)): x = ctx[:i+1] x = x[-ctx_len:] if i == src_len: out = copy.deepcopy(init_state.out) else: out = model.run(x) if DEBUG_DEBUG: print('model', np.array(x), '==>', np.array( out), np.max(out), np.min(out)) if TOKEN_MODE == 'pile': out[0] = -999999999 # disable <|endoftext|> char = tokenizer.sample_logits(out, x, ctx_len, temperature=TEMPERATURE, top_p_usual=top_p, top_p_newline=top_p_newline) char = char.item() if tokenizer.charMode: print(tokenizer.itos[int(char)], end='', flush=True) else: print(tokenizer.tokenizer.decode(int(char)), end='', flush=True) ctx += [char] t_end = time.time_ns() print("\n----------", round((t_end - t_begin) / (10 ** 9), 2), end='s ')