######################################################################################################## # The RWKV v2-RNN Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## from torch.utils.cpp_extension import load import math import numpy as np import logging import torch import torch.nn as nn from torch.nn import functional as F logger = logging.getLogger(__name__) ######################################################################################################## # CUDA Kernel ######################################################################################################## T_MAX = 1024 # increase this if your ctx_len > 1024 B_GROUP_FORWARD = 4 # set to 8 for best performance B_GROUP_BACKWARD = 2 # set to 2 for best performance timex_cuda = load(name="timex", sources=["cuda/timex_op.cpp", "cuda/timex_cuda.cu"], verbose=True, extra_cuda_cflags=['--use_fast_math', '--extra-device-vectorization', f'-DTmax={T_MAX}', f'-DBF={B_GROUP_FORWARD}', f'-DBB={B_GROUP_BACKWARD}']) class TimeX(torch.autograd.Function): @staticmethod def forward(ctx, w, k, B, C, T, eps): ctx.B = B ctx.C = C ctx.T = T assert ctx.T % 4 == 0 and ctx.T <= T_MAX and ctx.B % B_GROUP_FORWARD == 0 and ctx.B % B_GROUP_BACKWARD == 0 w = w.contiguous() k = k.contiguous() ctx.save_for_backward(w, k) wk = torch.empty((B, C, T), device='cuda', memory_format=torch.contiguous_format) timex_cuda.forward(w, k, wk, eps, B, C, T) return wk @staticmethod def backward(ctx, gwk): assert ctx.T % 4 == 0 and ctx.T <= T_MAX and ctx.B % B_GROUP_FORWARD == 0 and ctx.B % B_GROUP_BACKWARD == 0 w, k = ctx.saved_tensors gw = torch.empty((ctx.B, ctx.C, ctx.T), device='cuda', memory_format=torch.contiguous_format) gk = torch.empty((ctx.B, ctx.C, ctx.T), device='cuda', memory_format=torch.contiguous_format) timex_cuda.backward(w, k, gwk.contiguous(), gw, gk, ctx.B, ctx.C, ctx.T) return (gw.sum(dim=0), gk, None, None, None, None) ######################################################################################################## # RWKV: RWKV Time-mix + RWKV Channel-mix ######################################################################################################## RWKV_K_CLAMP = 60 # e^60 = 1e26 RWKV_K_EPS = 1e-16 RWKV_HEAD_QK_DIM = 256 def RWKV_Init(module, config): # fancy initialization of all lin & emb layer in the module for m in module.modules(): if not isinstance(m, (nn.Linear, nn.Embedding)): continue with torch.no_grad(): name = '[unknown weight]' for name, parameter in module.named_parameters(): # find the name of the weight if id(m.weight) == id(parameter): break shape = m.weight.data.shape gain = 1.0 scale = 1.0 # extra scale for gain if isinstance(m, nn.Embedding): gain = math.sqrt(max(shape[0], shape[1])) if shape[0] == config.vocab_size and shape[1] == config.n_embd: # token emb? scale = 1e-4 else: scale = 0 if isinstance(m, nn.Linear): if m.bias is not None: m.bias.data.zero_() if shape[0] > shape[1]: gain = math.sqrt(shape[0] / shape[1]) if shape[0] == config.vocab_size and shape[1] == config.n_embd: # final projection? scale = 0.5 if hasattr(m, 'scale_init'): scale = m.scale_init # print(str(shape[0]).ljust(5), str(shape[1]).ljust(5), f'{round(scale,2):g}'.ljust(4), name) gain *= scale if scale == -999: nn.init.eye_(m.weight) elif gain == 0: # zero init is great for some RWKV matrices nn.init.zeros_(m.weight) elif gain > 0: nn.init.orthogonal_(m.weight, gain=gain) else: nn.init.normal_(m.weight, mean=0.0, std=-scale) class RWKV_TimeMix(nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id self.ctx_len = config.ctx_len self.n_embd = config.n_embd attn_sz = config.n_embd ############# fancy init of time_w curves ################################### f1_begin = 3.0 f1_end = 1.2 f2_begin = 0.65 f2_end = 0.4 with torch.no_grad(): # initial time_w curves for better convergence decay_speed = torch.ones(attn_sz, 1) first_sa_layer_id = 1 for h in range(attn_sz): f1 = f1_begin + (layer_id-first_sa_layer_id) / \ (config.n_layer-1-first_sa_layer_id) * (f1_end - f1_begin) f2 = f2_begin + (layer_id-first_sa_layer_id) / \ (config.n_layer-1-first_sa_layer_id) * (f2_end - f2_begin) if layer_id == first_sa_layer_id: f1 += 0.5 if layer_id == config.n_layer-2: f2 = 0.4 if layer_id == config.n_layer-1: f2 = 0.37 decay_speed[h][0] = math.pow(f2, h / (attn_sz-1) * 7) * f1 self.time_decay = nn.Parameter(torch.log(decay_speed)) # will use exp(self.time_decay) to ensure time_decay > 0 self.time_curve = torch.tensor( [-(config.ctx_len - 2 - i) for i in range(config.ctx_len-1)]).unsqueeze(0) self.time_curve = self.time_curve.to('cuda') self.time_first = nn.Parameter(torch.ones(attn_sz, 1) * math.log(0.3)) ############################################################################# self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) with torch.no_grad(): # init to "shift half of the channels" ww = torch.ones(1, 1, config.n_embd) for i in range(config.n_embd // 2): ww[0, 0, i] = 0 self.time_mix = nn.Parameter(ww) self.key = nn.Linear(config.n_embd, attn_sz, bias=False) self.value = nn.Linear(config.n_embd, attn_sz, bias=False) self.receptance = nn.Linear(config.n_embd, attn_sz, bias=False) self.output = nn.Linear(attn_sz, config.n_embd, bias=False) self.key.scale_init = 0 self.receptance.scale_init = 0 self.output.scale_init = 0 def forward(self, x): B, T, C = x.size() x = x * self.time_mix + self.time_shift(x) * (1 - self.time_mix) k = self.key(x).transpose(-1, -2) v = self.value(x).transpose(-1, -2) r = self.receptance(x) # RWKV_K_CLAMP can be removed if the CUDA kernel substracts the correct k_max for each k (I will do this later) k = torch.clamp(k, max=RWKV_K_CLAMP) k = torch.exp(k) kv = k * v self.time_w = torch.cat( [torch.exp(self.time_decay) * self.time_curve, self.time_first], dim=-1) w = torch.exp(self.time_w) wkv = TimeX.apply(w, kv, B, C, T, 0) # RWKV_K_EPS can be removed if the CUDA kernel sets 0/0 = 0 (I will do this later) wk = TimeX.apply(w, k, B, C, T, RWKV_K_EPS) rwkv = torch.sigmoid(r) * (wkv / wk).transpose(-1, -2) rwkv = self.output(rwkv) return rwkv class RWKV_ChannelMix(nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) with torch.no_grad(): # init to "shift half of the channels" x = torch.ones(1, 1, config.n_embd) for i in range(config.n_embd // 2): x[0, 0, i] = 0 self.time_mix = nn.Parameter(x) hidden_sz = 4 * config.n_embd self.key = nn.Linear(config.n_embd, hidden_sz, bias=False) self.receptance = nn.Linear(config.n_embd, config.n_embd, bias=False) self.value = nn.Linear(hidden_sz, config.n_embd, bias=False) self.value.scale_init = 0 self.receptance.scale_init = 0 def forward(self, x): x = x * self.time_mix + self.time_shift(x) * (1 - self.time_mix) k = self.key(x) k = torch.square(torch.relu(k)) kv = self.value(k) rkv = torch.sigmoid(self.receptance(x)) * kv return rkv ######################################################################################################## # The GPT Model with our blocks ######################################################################################################## class GPTConfig: def __init__(self, vocab_size, ctx_len, **kwargs): self.vocab_size = vocab_size self.ctx_len = ctx_len for k, v in kwargs.items(): setattr(self, k, v) class Block(nn.Module): def __init__(self, config, layer_id): super().__init__() self.config = config self.layer_id = layer_id self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) if self.layer_id == 0 and self.config.model_type == 'RWKV-ffnPre': self.ffnPre = RWKV_ChannelMix(config, layer_id+1000) else: self.att = RWKV_TimeMix(config, layer_id) self.ffn = RWKV_ChannelMix(config, layer_id) def forward(self, x): x = self.ln1(x) if self.layer_id == 0 and self.config.model_type == 'RWKV-ffnPre': x = x + self.ffnPre(x) # better in some cases else: x = x + self.att(x) x = self.ln2(x) x = x + self.ffn(x) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.step = 0 self.config = config self.emb = nn.Embedding(config.vocab_size, config.n_embd) self.blocks = nn.Sequential(*[Block(config, i) for i in range(config.n_layer)]) self.ln_out = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.head_q = nn.Linear(config.n_embd, RWKV_HEAD_QK_DIM, bias=False) self.head_q.scale_init = 0 self.head_k = nn.Linear(config.n_embd, RWKV_HEAD_QK_DIM, bias=False) self.head_k.scale_init = 0.1 self.register_buffer("copy_mask", torch.tril( torch.ones(config.ctx_len, config.ctx_len))) self.ctx_len = config.ctx_len RWKV_Init(self, config) logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_ctx_len(self): return self.ctx_len def _init_weights(self, module): if isinstance(module, (nn.Linear)): module.weight.data.normal_(mean=0.0, std=0.01) if isinstance(module, (nn.Embedding)): module.weight.data.normal_(mean=0.0, std=1e-5) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def configure_optimizers(self, train_config): # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() for mn, m in self.named_modules(): # here we disable weight_decay for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name no_decay.add(fpn) param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len( inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.Adam( optim_groups, lr=train_config.learning_rate, betas=train_config.betas, eps=train_config.eps) return optimizer def forward(self, idx, targets=None): self.step += 1 B, T = idx.size() assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len." x = self.emb(idx) x = self.blocks(x) x = self.ln_out(x) q = self.head_q(x)[:, :T, :] k = self.head_k(x)[:, :T, :] c = (q @ k.transpose(-2, -1)) * (1.0 / RWKV_HEAD_QK_DIM) c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0) c = c @ F.one_hot(idx, num_classes=self.config.vocab_size).float() x = self.head(x) + c loss = None if targets is not None: loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.view(-1)) return x, loss