######################################################################################################## # The RWKV v2-RNN Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## import logging import datetime import json from src.model import GPT, GPTConfig from src.trainer import Trainer, TrainerConfig from src.utils import Dataset import torch import numpy as np torch.backends.cudnn.benchmark = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True ### Step 1: set training data ########################################################################## datafile = "enwik8" datafile_encoding = 'utf-8' # datafile_encoding = 'utf-16le' ### Step 2: set model size ############################################################################# ctx_len = 1024 # ===> increase T_MAX in model.py if your ctx_len > 1024 n_layer = 6 n_embd = 512 # 'RWKV' (better for char-level English) or 'RWKV-ffnPre' (better in some cases) model_type = 'RWKV' ### Step 3: set batch size ############################################################################# # ===> batch_size must be divisible by B_GROUP_FORWARD and B_GROUP_BACKWARD in model.py # For example, if your batch_size = 20, you can set B_GROUP_FORWARD = 4, B_GROUP_BACKWARD = 2 # If you see "CUDA out of memory", reduce it. Use GPU-Z to find the highest value for your VRAM. batch_size = 12 ### Step 4: set learning rate, training mini-epochs ####################################################### lr_init = 6e-4 lr_final = 1e-5 # the mini-epoch is very short and of fixed length (ctx_len * epoch_length_fixed tokens) n_epoch = 500 # 0 = never, 1 = every mini-epoch, 2 = every two mini-epochs, etc. epoch_save_frequency = 30 epoch_save_path = 'trained-' epoch_length_fixed = 10000 ######################################################################################################## # import src.utils # src.utils.set_seed(42) # remember to change seed if you load a model np.set_printoptions(precision=4, suppress=True, linewidth=200) logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO,) grad_norm_clip = 1.0 warmup_tokens = 0 betas = (0.9, 0.99) eps = 4e-9 num_workers = 0 ######################################################################################################## # Load data ######################################################################################################## print('loading data... ' + datafile) train_dataset = Dataset(open( datafile, "r", encoding=datafile_encoding).read(), ctx_len, epoch_length_fixed) ######################################################################################################## # Train model ######################################################################################################## if __name__ == '__main__': model = GPT(GPTConfig(train_dataset.vocab_size, train_dataset.ctx_len, model_type=model_type, n_layer=n_layer, n_embd=n_embd)).cuda() # # # load a trained model. remember to change random seed # m2 = torch.load('trained-61.pth') # model.load_state_dict(m2) print('model', model_type, 'epoch', n_epoch, 'batchsz', batch_size, 'betas', betas, 'eps', eps, 'ctx', ctx_len, 'layer', n_layer, 'embd', n_embd, ) tconf = TrainerConfig(model_type=model_type, max_epochs=n_epoch, batch_size=batch_size, learning_rate=lr_init, lr_decay=True, lr_final=lr_final, betas=betas, eps=eps, grad_norm_clip=grad_norm_clip, warmup_tokens=warmup_tokens, final_tokens=n_epoch*len(train_dataset)*ctx_len, num_workers=num_workers, epoch_save_frequency=epoch_save_frequency, epoch_save_path=epoch_save_path) trainer = Trainer(model, train_dataset, None, tconf) trainer.train() torch.save(model.state_dict(), 'trained-' + str(n_epoch) + '-' + trainer.get_run_name() + '-' + datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S') + '.pth')