######################################################################################################## # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## print('Loading...') from src.model_run import RWKV_RNN import numpy as np import os, copy, types, gc, sys import torch from src.utils import TOKENIZER try: os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1] except: pass torch.backends.cudnn.benchmark = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True np.set_printoptions(precision=4, suppress=True, linewidth=200) WORD_NAME = [ "20B_tokenizer.json", "20B_tokenizer.json", ] # [vocab, vocab] for Pile model UNKNOWN_CHAR = None tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR) args = types.SimpleNamespace() args.RUN_DEVICE = "cuda" # 'cpu' (already very fast) // 'cuda' args.FLOAT_MODE = "fp16" # fp32 (good for CPU) // fp16 (recommended for GPU) // bf16 (less accurate) args.vocab_size = 50277 args.head_qk = 0 args.pre_ffn = 0 args.grad_cp = 0 args.my_pos_emb = 0 args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-14b/RWKV-4-Pile-14B-20230108-5170' args.n_layer = 40 args.n_embd = 5120 args.ctx_len = 1024 # args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-7b/RWKV-4-Pile-7B-20221115-8047' # args.n_layer = 32 # args.n_embd = 4096 # args.ctx_len = 1024 # args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-3b/RWKV-4-Pile-3B-20221008-8023' # args.n_layer = 32 # args.n_embd = 2560 # args.ctx_len = 1024 os.environ["RWKV_RUN_DEVICE"] = args.RUN_DEVICE MODEL_NAME = args.MODEL_NAME user = "User" bot = "Bot" interface = ":" init_prompt = f''' The following is a verbose and detailed conversation between a highly knowledgeable and intelligent AI assistant called {bot}, and a human user called {user}. {bot} always tells the truth and facts. {bot} is polite and humorous. The conversation begins. {user}{interface} french revolution what year {bot}{interface} The French revolution started in 1789, and lasted 10 years until 1799. {user}{interface} 3+5=? {bot}{interface} 3 + 5 = 8, so the answer is 8. {user}{interface} guess i marry who ? {bot}{interface} Only if you tell me more about yourself - what are your interests? {user}{interface} solve for a: 9-a=2 {bot}{interface} The answer is a = 7, because 9 - 7 = 2. {user}{interface} wat is lhc {bot}{interface} LHC is a large and very expensive piece of science equipment. It’s a high-energy particle collider, built by CERN, and completed in 2008. They used it to confirm the existence of the Higgs boson in 2012. ''' # Load Model print(f'loading... {MODEL_NAME}') model = RWKV_RNN(args) model_tokens = [] current_state = None ######################################################################################################## def run_rnn(tokens, newline_adj = 0): global model_tokens, current_state for i in range(len(tokens)): model_tokens += [tokens[i]] if i == len(tokens) - 1: out, current_state = model.forward(model_tokens, current_state) else: current_state = model.forward(model_tokens, current_state, preprocess_only = True) # print(f'### model ###\n[{tokenizer.tokenizer.decode(model_tokens)}]') out[0] = -999999999 # disable <|endoftext|> out[187] += newline_adj if newline_adj > 0: out[15] += newline_adj / 2 # '.' return out all_state = {} def save_all_stat(srv, name, last_out): n = f'{name}_{srv}' all_state[n] = {} all_state[n]['out'] = last_out all_state[n]['rnn'] = copy.deepcopy(current_state) all_state[n]['token'] = copy.deepcopy(model_tokens) def load_all_stat(srv, name): global model_tokens, current_state n = f'{name}_{srv}' current_state = copy.deepcopy(all_state[n]['rnn']) model_tokens = copy.deepcopy(all_state[n]['token']) return all_state[n]['out'] ######################################################################################################## # Run inference print(f'\nRun prompt...') out = run_rnn(tokenizer.tokenizer.encode(init_prompt)) gc.collect() torch.cuda.empty_cache() save_all_stat('', 'chat_init', out) srv_list = ['dummy_server'] for s in srv_list: save_all_stat(s, 'chat', out) print(f'### prompt ###\n[{tokenizer.tokenizer.decode(model_tokens)}]\n') def reply_msg(msg): print('Bot:', msg + '\n') def on_message(message): global model_tokens, current_state srv = 'dummy_server' msg = message.strip() if len(msg) > 1000: reply_msg('your message is too long (max 1000 tokens)') return x_temp = 1.0 x_top_p = 0.8 if ("-temp=" in msg): x_temp = float(msg.split("-temp=")[1].split(" ")[0]) msg = msg.replace("-temp="+f'{x_temp:g}', "") # print(f"temp: {x_temp}") if ("-top_p=" in msg): x_top_p = float(msg.split("-top_p=")[1].split(" ")[0]) msg = msg.replace("-top_p="+f'{x_top_p:g}', "") # print(f"top_p: {x_top_p}") if x_temp <= 0.2: x_temp = 0.2 if x_temp >= 5: x_temp = 5 if x_top_p <= 0: x_top_p = 0 if msg == '+reset_rwkv' or msg == '+rwkv_reset': out = load_all_stat('', 'chat_init') save_all_stat(srv, 'chat', out) reply_msg("Chat reset.") return elif msg[:10] == '+rwkv_gen ' or msg[:9] == '+rwkv_qa ' or msg == '+rwkv_more' or msg == '+rwkv_retry' or msg == '+rwkv_again': if msg[:10] == '+rwkv_gen ': new = '\n' + msg[10:].strip() # print(f'### prompt ###\n[{new}]') current_state = None out = run_rnn(tokenizer.tokenizer.encode(new)) save_all_stat(srv, 'gen_0', out) elif msg[:9] == '+rwkv_qa ': out = load_all_stat('', 'chat_init') real_msg = msg[9:].strip() new = f"{user}{interface} {real_msg}\n\n{bot}{interface}" # print(f'### qa ###\n[{new}]') out = run_rnn(tokenizer.tokenizer.encode(new)) save_all_stat(srv, 'gen_0', out) # new = f"\nThe following is an excellent Q&A session consists of detailed and factual information.\n\nQ: What is 3+5?\nA: 3+5=8.\n\nQ: {msg[9:].strip()}\nA:" # print(f'### prompt ###\n[{new}]') # current_state = None # out = run_rnn(tokenizer.tokenizer.encode(new)) # save_all_stat(srv, 'gen_0', out) elif msg == '+rwkv_more': try: out = load_all_stat(srv, 'gen_1') save_all_stat(srv, 'gen_0', out) except: return elif msg == '+rwkv_retry' or msg == '+rwkv_again': try: out = load_all_stat(srv, 'gen_0') except: return begin = len(model_tokens) for i in range(100): token = tokenizer.sample_logits( out, model_tokens, args.ctx_len, temperature=x_temp, top_p_usual=x_top_p, top_p_newline=x_top_p, ) if msg[:9] == '+rwkv_qa ': out = run_rnn([token], newline_adj=-2) else: out = run_rnn([token]) send_msg = tokenizer.tokenizer.decode(model_tokens[begin:]).strip() # print(f'### send ###\n[{send_msg}]') reply_msg(send_msg) save_all_stat(srv, 'gen_1', out) else: if msg == '+rwkv_alt': try: out = load_all_stat(srv, 'chat_pre') except: return else: out = load_all_stat(srv, 'chat') new = f"{user}{interface} {msg}\n\n{bot}{interface}" # print(f'### add ###\n[{new}]') out = run_rnn(tokenizer.tokenizer.encode(new), newline_adj=-999999999) save_all_stat(srv, 'chat_pre', out) begin = len(model_tokens) for i in range(120): if i <= 0: newline_adj = -999999999 elif i <= 30: newline_adj = -1 elif i <= 80: newline_adj = 0 elif i <= 117: newline_adj = (i - 80) * 0.5 else: newline_adj = 999999999 token = tokenizer.sample_logits( out, model_tokens, args.ctx_len, temperature=x_temp, top_p_usual=x_top_p, top_p_newline=x_top_p, ) out = run_rnn([token], newline_adj=newline_adj) if tokenizer.tokenizer.decode(model_tokens[-10:]).endswith(f'\n\n'): break send_msg = tokenizer.tokenizer.decode(model_tokens[begin:]).strip() # print(f'### send ###\n[{send_msg}]') reply_msg(send_msg) save_all_stat(srv, 'chat', out) print('''Commands: +rwkv_alt --> alternate chat reply +rwkv_reset --> reset chat +rwkv_gen YOUR PROMPT --> free generation with your prompt +rwkv_qa YOUR QUESTION --> free generation - ask any question and get answer (just ask the question) +rwkv_more --> continue last free generation [does not work for chat] +rwkv_retry --> retry last free generation Now talk with the bot and enjoy. Remember to +rwkv_reset periodically to clean up the bot's memory. Use RWKV-4 14B for best results. This is not instruct-tuned for conversation yet, so don't expect good quality. Better use +rwkv_gen for free generation. ''') while True: msg = input('User: ') if len(msg.strip()) > 0: on_message(msg) else: print('Erorr: please say something')