######################################################################################################## # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## import math import logging import torch import torch.nn as nn from torch.nn import functional as F logger = logging.getLogger(__name__) ######################################################################################################## # RWKV: RWKV Time-mix + RWKV Channel-mix ######################################################################################################## class RWKV_TimeMix(nn.Module): def __init__(self, config, layer_id): super().__init__() assert config.n_embd % config.n_head == 0 self.layer_id = layer_id self.ctx_len = config.ctx_len self.n_head = config.n_head self.head_size = config.n_embd // config.n_head self.time_w = nn.Parameter(torch.ones(self.n_head, config.ctx_len)) self.time_alpha = nn.Parameter(torch.ones(self.n_head, 1, config.ctx_len)) self.time_beta = nn.Parameter(torch.ones(self.n_head, config.ctx_len, 1)) self.time_gamma = nn.Parameter(torch.ones(config.ctx_len, 1)) self.register_buffer("mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len))) self.time_shift = nn.ZeroPad2d((0,0,1,0)) self.key = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) self.receptance = nn.Linear(config.n_embd, config.n_embd) self.output = nn.Linear(config.n_embd, config.n_embd) def forward(self, x): B, T, C = x.size() TT = self.ctx_len w = F.pad(self.time_w, (0, TT)) w = torch.tile(w, [TT]) w = w[:, :-TT].reshape(-1, TT, 2 * TT - 1) w = w[:, :, TT-1:] # w is now a circulant matrix w = w[:, :T, :T] * self.time_alpha[:, :, :T] * self.time_beta[:, :T, :] w = w.masked_fill(self.mask[:T, :T] == 0, 0) x = torch.cat([self.time_shift(x)[:, :-1, :C//2], x[:, :, C//2:]], dim = -1) k = self.key(x) v = self.value(x) r = self.receptance(x) k = torch.exp(k) sum_k = torch.cumsum(k, dim=1) k = k.view(B, T, self.n_head, self.head_size) v = v.view(B, T, self.n_head, self.head_size) wkv = (torch.einsum('htu,buhc->bthc', w, k * v)).contiguous().view(B, T, C) rwkv = torch.sigmoid(r) * wkv / sum_k return self.output(rwkv) * self.time_gamma[:T, :] class RWKV_ChannelMix(nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id self.time_shift = nn.ZeroPad2d((0,0,1,0)) self.key = nn.Linear(config.n_embd, 3 * config.n_embd) self.value = nn.Linear(config.n_embd, 3 * config.n_embd) self.weight = nn.Linear(3 * config.n_embd, config.n_embd) self.receptance = nn.Linear(config.n_embd, config.n_embd) def forward(self, x): B, T, C = x.size() x = torch.cat([self.time_shift(x)[:, :-1, :C//2], x[:, :, C//2:]], dim = -1) k = self.key(x) v = self.value(x) r = self.receptance(x) wkv = self.weight(F.mish(k) * v) # seems mish is a bit better than gelu rwkv = torch.sigmoid(r) * wkv return rwkv ######################################################################################################## # MHA_rotary: Multi-head Attention + Rotary Encoding + GeGLU FFN ######################################################################################################## class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x, seq_len=None): if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device) freqs = torch.einsum('i,j->ij', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.cos_cached = emb.cos() self.sin_cached = emb.sin() return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), -1) @torch.jit.script def apply_rotary_pos_emb(q, k, cos, sin): cos, sin = cos[...,:q.shape[2],:], sin[...,:q.shape[2],:] return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) class MHA_rotary(nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id assert config.n_embd % config.n_head == 0 self.n_head = config.n_head self.ctx_len = config.ctx_len self.head_size = config.n_embd // config.n_head self.query = nn.Linear(config.n_embd, config.n_embd) self.key = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) self.register_buffer("mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len))) self.rotary_ndims = int(self.head_size * 0.5) self.rotary_emb = RotaryEmbedding(self.rotary_ndims) self.output = nn.Linear(config.n_embd, config.n_embd) def forward(self, x): B, T, C = x.size() q = self.query(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) k = self.key(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) q, query_pass = q[..., :self.rotary_ndims], q[..., self.rotary_ndims:] k, key_pass = k[..., :self.rotary_ndims], k[..., self.rotary_ndims:] cos, sin = self.rotary_emb(q, seq_len=T) q, k = apply_rotary_pos_emb(q, k, cos, sin) # rotary encoding q = torch.cat((q, query_pass), dim=-1) k = torch.cat((k, key_pass), dim=-1) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # self-attention: (B, nh, T, hs) * (B, nh, hs, T) -> (B, nh, T, T) att = att.masked_fill(self.mask[:T,:T] == 0, float('-inf')) # causal mask att = F.softmax(att, dim = -1) # softmax x = att @ v # (B, nh, T, T) * (B, nh, T, hs) -> (B, nh, T, hs) x = x.transpose(1, 2).contiguous().view(B, T, C) # (B, nh, T, hs) -> (B, T, nh, hs) -> (B, T, C) x = self.output(x) # output projection return x class GeGLU(torch.nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id self.key = nn.Linear(config.n_embd, 3 * config.n_embd) self.value = nn.Linear(config.n_embd, 3 * config.n_embd) self.weight = nn.Linear(3 * config.n_embd, config.n_embd) def forward(self, x): k = self.key(x) v = self.value(x) y = self.weight(F.gelu(k) * v) return y ######################################################################################################## # MHA_pro: with more tricks ######################################################################################################## class MHA_pro(nn.Module): def __init__(self, config, layer_id): super().__init__() self.layer_id = layer_id assert config.n_embd % config.n_head == 0 self.n_head = config.n_head self.ctx_len = config.ctx_len self.head_size = config.n_embd // config.n_head self.time_w = nn.Parameter(torch.ones(self.n_head, config.ctx_len)) self.time_alpha = nn.Parameter(torch.ones(self.n_head, 1, config.ctx_len)) self.time_beta = nn.Parameter(torch.ones(self.n_head, config.ctx_len, 1)) self.time_gamma = nn.Parameter(torch.ones(config.ctx_len, 1)) self.register_buffer("mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len))) self.time_shift = nn.ZeroPad2d((0,0,1,0)) self.query = nn.Linear(config.n_embd, config.n_embd) self.key = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) self.rotary_ndims = int(self.head_size * 0.5) self.rotary_emb = RotaryEmbedding(self.rotary_ndims) self.head_mix = nn.Conv2d(self.n_head, self.n_head, kernel_size=1, bias=False) # talking heads self.output = nn.Linear(config.n_embd, config.n_embd) def forward(self, x): B, T, C = x.size() TT = self.ctx_len w = F.pad(self.time_w, (0, TT)) w = torch.tile(w, [TT]) w = w[:, :-TT].reshape(-1, TT, 2 * TT - 1) w = w[:, :, TT-1:] # w is now a circulant matrix w = w[:, :T, :T] * self.time_alpha[:, :, :T] * self.time_beta[:, :T, :] x = torch.cat([self.time_shift(x)[:, :-1, :C//2], x[:, :, C//2:]], dim = -1) # time-mixing q = self.query(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) k = self.key(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs) q, query_pass = q[..., :self.rotary_ndims], q[..., self.rotary_ndims:] k, key_pass = k[..., :self.rotary_ndims], k[..., self.rotary_ndims:] cos, sin = self.rotary_emb(q, seq_len=T) q, k = apply_rotary_pos_emb(q, k, cos, sin) # rotary encoding q = torch.cat((q, query_pass), dim=-1) k = torch.cat((k, key_pass), dim=-1) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # self-attention: (B, nh, T, hs) * (B, nh, hs, T) -> (B, nh, T, T) att = att.masked_fill(self.mask[:T,:T] == 0, float('-inf')) # causal mask att = F.softmax(att, dim = -1) # softmax att = att * w # time-weighting att = self.head_mix(att) # talking heads x = att @ v # (B, nh, T, T) * (B, nh, T, hs) -> (B, nh, T, hs) x = x.transpose(1, 2).contiguous().view(B, T, C) # (B, nh, T, hs) -> (B, T, nh, hs) -> (B, T, C) x = self.output(x) * self.time_gamma[:T, :] return x ######################################################################################################## # The GPT Model with our blocks ######################################################################################################## class LabelSmoothingCrossEntropy(nn.Module): # can avoid nan loss def __init__(self, smoothing=0.0): super().__init__() self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, pred, target): pred = pred.log_softmax(dim=-1) with torch.no_grad(): true_dist = torch.zeros_like(pred) true_dist.fill_(self.smoothing / (pred.size(-1) - 1)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) return torch.mean(torch.sum(-true_dist * pred, dim=-1)) class RMSNorm(nn.Module): def __init__(self, d): super().__init__() self.dd = d ** (-1. / 2) self.weight = nn.Parameter(torch.ones(d)) def forward(self, x): norm_x = x.norm(2, dim=-1, keepdim=True) x_normed = x / (norm_x * self.dd + 1e-12) return self.weight * x_normed class FixedNorm(nn.Module): def __init__(self, d): super().__init__() self.dd = d ** (-1. / 2) def forward(self, x): norm_x = x.norm(2, dim=-1, keepdim=True) x_normed = x / (norm_x * self.dd + 1e-12) return x_normed ######################################################################################################## class GPTConfig: def __init__(self, vocab_size, ctx_len, **kwargs): self.vocab_size = vocab_size self.ctx_len = ctx_len for k,v in kwargs.items(): setattr(self, k, v) class Block(nn.Module): def __init__(self, config, layer_id): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) if config.model_type == 'RWKV': self.ln1 = FixedNorm(config.n_embd) self.ln2 = FixedNorm(config.n_embd) self.attn = RWKV_TimeMix(config, layer_id) self.mlp = RWKV_ChannelMix(config, layer_id) elif config.model_type == 'MHA_rotary': self.attn = MHA_rotary(config, layer_id) self.mlp = GeGLU(config, layer_id) elif config.model_type == 'MHA_pro': self.attn = MHA_pro(config, layer_id) self.mlp = RWKV_ChannelMix(config, layer_id) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.blocks = nn.Sequential(*[Block(config, i) for i in range(config.n_layer)]) if config.model_type == 'RWKV': self.ln_f = FixedNorm(config.n_embd) else: self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.ctx_len = config.ctx_len self.apply(self._init_weights) if self.config.model_type == 'RWKV': # improve orthogonal weight init ww = self.state_dict() for k in ww: if 'tok_emb' in k: if self.config.vocab_size > self.config.n_embd: ww[k] *= math.sqrt(self.config.vocab_size) else: ww[k] *= math.sqrt(self.config.n_embd) ww[k] *= 0.4 # 0.4 is a safe choice // 0.8 might works better for chinese elif 'head.weight' in k: ww[k] *= 0.4 # 0.4 is a safe choice // 0.8 might works better for chinese elif 'blocks.' in k: block_id = int(k.split('.')[1]) if 'receptance.weight' in k: ww[k] *= 0.2 # 0.2 ~ 0.5 gives similar results elif 'attn.key.weight' in k: ww[k] *= 0.2 # 0.2 ~ 0.5 gives similar results elif 'attn.output.weight' in k: ww[k] *= 1 / pow(1+block_id, 0.5) # 0.5 ~ 0.7 gives similar results elif 'mlp.weight.weight' in k: ww[k] *= 1 / pow(1+block_id, 0.5) # 0.5 ~ 0.7 gives similar results logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_ctx_len(self): return self.ctx_len def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): if self.config.model_type == 'RWKV': gain = 1.0 if isinstance(module, nn.Linear): if module.weight.data.shape[0] > module.weight.data.shape[1]: gain = math.sqrt(module.weight.data.shape[0] / module.weight.data.shape[1]) nn.init.orthogonal_(module.weight, gain=gain) else: module.weight.data.normal_(mean=0.0, std=0.01) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def configure_optimizers(self, train_config): # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (nn.Linear, ) blacklist_weight_modules = (RMSNorm, nn.LayerNorm, nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias') or ('time' in fpn) or ('head' in fpn): no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): no_decay.add(fpn) # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len." x = self.tok_emb(idx) x = self.blocks(x) x = self.ln_f(x) x = self.head(x) loss = None if targets is not None: loss = LabelSmoothingCrossEntropy(smoothing=1e-6)(x.view(-1, x.size(-1)), targets.view(-1)) # try increasing smoothing if you see nan return x, loss