You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RWKV-LM/RWKV-v2-RNN/train.py

142 lines
5.4 KiB
Python

########################################################################################################
# The RWKV v2-RNN Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import logging
import datetime
import json
from src.model import GPT, GPTConfig
from src.trainer import Trainer, TrainerConfig
from torch.utils.data import Dataset
import torch
import numpy as np
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
### Step 1: set training data ##########################################################################
datafile = "enwik8"
datafile_encoding = 'utf-8'
# datafile_encoding = 'utf-16le'
### Step 2: set model size #############################################################################
ctx_len = 1024 # ===> increase T_MAX in model.py if your ctx_len > 1024
n_layer = 6
n_embd = 512
# 'RWKV' (better for char-level English) or 'RWKV-ffnPre' (better in some cases)
model_type = 'RWKV'
### Step 3: set batch size #############################################################################
# ===> batch_size must be divisible by B_GROUP_FORWARD and B_GROUP_BACKWARD in model.py
# For example, if your batch_size = 20, you can set B_GROUP_FORWARD = 4, B_GROUP_BACKWARD = 2
# If you see "CUDA out of memory", reduce it. Use GPU-Z to find the highest value for your VRAM.
batch_size = 12
### Step 4: set learning rate, training 'epochs' #######################################################
lr_init = 6e-4
lr_final = 1e-5
# the 'epoch' here is very short and of fixed length (ctx_len * epoch_length_fixed tokens)
n_epoch = 500
# 0 = never, 1 = every 'epoch', 2 = every two 'epoch', etc.
epoch_save_frequency = 30
epoch_save_path = 'trained-'
epoch_length_fixed = 10000
########################################################################################################
# import src.utils
# src.utils.set_seed(42) # remember to change seed if you load a model
np.set_printoptions(precision=4, suppress=True, linewidth=200)
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO,)
grad_norm_clip = 1.0
warmup_tokens = 0
betas = (0.9, 0.99)
eps = 4e-9
num_workers = 0
########################################################################################################
# Load data
########################################################################################################
print('loading data... ' + datafile)
class Dataset(Dataset):
def __init__(self, data, ctx_len):
print('building token list...', end=' ')
unique = sorted(list(set(data)))
# print()
# for u in unique:
# print(u, end=' ')
# print('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open('vocab.json', "w", encoding="utf-16") as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
data_size, vocab_size = len(data), len(unique)
print('data has %d tokens, %d unique.' % (data_size, vocab_size))
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
self.ctx_len = ctx_len
self.vocab_size = vocab_size
self.data = data
def __len__(self):
return epoch_length_fixed
def __getitem__(self, idx):
# cheat: pick a random spot in dataset
i = np.random.randint(0, len(self.data) - (self.ctx_len + 1))
chunk = self.data[i:i+self.ctx_len+1]
dix = [self.stoi[s] for s in chunk]
x = torch.tensor(dix[:-1], dtype=torch.long,
device=torch.device('cuda'))
y = torch.tensor(dix[1:], dtype=torch.long,
device=torch.device('cuda'))
return x, y
train_dataset = Dataset(
open(datafile, "r", encoding=datafile_encoding).read(), ctx_len)
########################################################################################################
# Train model
########################################################################################################
if __name__ == '__main__':
model = GPT(GPTConfig(train_dataset.vocab_size, train_dataset.ctx_len, model_type=model_type,
n_layer=n_layer, n_embd=n_embd)).cuda()
# # # load a trained model. remember to change random seed
# m2 = torch.load('trained-61.pth')
# model.load_state_dict(m2)
print('model', model_type, 'epoch', n_epoch, 'batchsz', batch_size, 'betas',
betas, 'eps', eps, 'ctx', ctx_len, 'layer', n_layer, 'embd', n_embd, )
tconf = TrainerConfig(model_type=model_type, max_epochs=n_epoch, batch_size=batch_size,
learning_rate=lr_init, lr_decay=True, lr_final=lr_final, betas=betas, eps=eps, grad_norm_clip=grad_norm_clip,
warmup_tokens=warmup_tokens, final_tokens=n_epoch*len(train_dataset)*ctx_len, num_workers=num_workers, epoch_save_frequency=epoch_save_frequency, epoch_save_path=epoch_save_path)
trainer = Trainer(model, train_dataset, None, tconf)
trainer.train()
torch.save(model.state_dict(), 'trained-' + str(n_epoch) + '-' + trainer.get_run_name() +
'-' + datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S') + '.pth')