You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RWKV-LM/RWKV-v2-RNN/src/utils.py

123 lines
4.0 KiB
Python

########################################################################################################
# The RWKV v2-RNN Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json
import random
import time
import math
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
class Dataset(Dataset):
def __init__(self, data, ctx_len, epoch_length_fixed):
print('building token list...', end=' ')
unique = sorted(list(set(data)))
# print()
# for u in unique:
# print(u, end=' ')
# print('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open('vocab.json', "w", encoding="utf-16") as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
data_size, vocab_size = len(data), len(unique)
print('data has %d tokens, %d unique.' % (data_size, vocab_size))
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
self.ctx_len = ctx_len
self.epoch_length_fixed = epoch_length_fixed
self.vocab_size = vocab_size
self.data = data
def __len__(self):
return self.epoch_length_fixed
def __getitem__(self, idx):
# cheat: pick a random spot in dataset
i = np.random.randint(0, len(self.data) - (self.ctx_len + 1))
chunk = self.data[i:i+self.ctx_len+1]
dix = [self.stoi[s] for s in chunk]
x = torch.tensor(dix[:-1], dtype=torch.long,
device=torch.device('cuda'))
y = torch.tensor(dix[1:], dtype=torch.long,
device=torch.device('cuda'))
return x, y
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(torch.tensor(out), dim=-1)
if self.itos[lastChar] == '\n':
top_p = top_p_newline
else:
top_p = top_p_usual
sorted_probs, s_index = torch.sort(probs, descending=True)
# for j in range(30):
# pp = sorted_probs[j].item()
# if pp < 0.005:
# break
# ss = self.itos[int(s_index[j])].replace('\n','_')
# print(f'{math.floor(pp*100):>3.0f}{ss}', end='')
# print('')
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
# print("[" + str(round(cutoff,4)) + ' ' + str(round(to_float(sum(probs)),3)) + "]", end = "")
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
return torch.multinomial(probs, num_samples=1)[0]
def to_float(x):
return x.cpu().detach().numpy().flatten()[0].astype(float)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)