You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.0 KiB
Python
185 lines
6.0 KiB
Python
########################################################################################################
|
|
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
|
########################################################################################################
|
|
|
|
import numpy as np
|
|
import math, os
|
|
import time
|
|
import types
|
|
import copy
|
|
import torch
|
|
from src.utils import TOKENIZER
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
########################################################################################################
|
|
# Step 1: set model
|
|
#
|
|
# Set TOKEN_MODE to 'char' or 'bpe' if the model is trained by 'train.py' from scratch.
|
|
#
|
|
# Set TOKEN_MODE to 'pile' if you want to test pre-trained pile models.
|
|
########################################################################################################
|
|
|
|
TOKEN_MODE = "pile" # char / bpe / pile
|
|
|
|
n_layer = 6
|
|
n_embd = 512
|
|
ctx_len = 1024
|
|
|
|
if TOKEN_MODE == "char":
|
|
MODEL_NAME = "trained-500" # your trained model
|
|
WORD_NAME = "vocab" # the .json vocab (generated by train.py)
|
|
# set UNKNOWN_CHAR to the rarest token in your vocab.json, and all unknown tokens in your prompt will be denoted by it
|
|
UNKNOWN_CHAR = " " # here we just set it to ' ' for simplicity
|
|
|
|
elif TOKEN_MODE == "bpe":
|
|
MODEL_NAME = "trained-500" # your trained model
|
|
WORD_NAME = [
|
|
"model-vocab.json",
|
|
"model-merges.txt",
|
|
] # [vocab, merge] for your BPE model
|
|
UNKNOWN_CHAR = None
|
|
|
|
elif TOKEN_MODE == "pile":
|
|
WORD_NAME = [
|
|
"20B_tokenizer.json",
|
|
"20B_tokenizer.json",
|
|
] # [vocab, vocab] for Pile model
|
|
UNKNOWN_CHAR = None
|
|
|
|
# ---> you can set MODEL_NAME to your fine-tuned model <---
|
|
|
|
# MODEL_NAME = "/fsx/BlinkDL/rwkv-release/RWKV-4-Pile-169M-20220807-8023"
|
|
# n_layer = 12
|
|
# n_embd = 768
|
|
# ctx_len = 1024
|
|
|
|
# MODEL_NAME = '/fsx/BlinkDL/rwkv-release/RWKV-4-Pile-430M-20220808-8066'
|
|
# n_layer = 24
|
|
# n_embd = 1024
|
|
# ctx_len = 1024
|
|
|
|
MODEL_NAME = '/fsx/BlinkDL/rwkv-release/RWKV-4-Pile-1B5-20220903-8040'
|
|
n_layer = 24
|
|
n_embd = 2048
|
|
ctx_len = 1024
|
|
|
|
os.environ["RWKV_FLOAT_MODE"] = "fp32" # currently only supprts fp32
|
|
os.environ["RWKV_RUN_DEVICE"] = "cpu" # 'cpu' (already very fast) or 'cuda'
|
|
model_type = "RWKV" # 'RWKV' or 'RWKV-ffnPre'
|
|
|
|
########################################################################################################
|
|
# Step 2: set prompt & sampling stuffs
|
|
########################################################################################################
|
|
|
|
# context = 'A'
|
|
# context = "\nIn the"
|
|
# context = '\nSugar:'
|
|
context = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
|
|
|
NUM_TRIALS = 999
|
|
LENGTH_PER_TRIAL = 333
|
|
|
|
TEMPERATURE = 1.0
|
|
top_p = 0.8
|
|
top_p_newline = 0.9 # only used in TOKEN_MODE = char
|
|
|
|
DEBUG_DEBUG = False # True False --> show softmax output
|
|
|
|
########################################################################################################
|
|
|
|
print(f"Loading {MODEL_NAME}...")
|
|
from src.model_run import RWKV_RNN
|
|
|
|
model = RWKV_RNN(
|
|
MODEL_NAME, os.environ["RWKV_RUN_DEVICE"], model_type, n_layer, n_embd, ctx_len
|
|
)
|
|
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)
|
|
|
|
########################################################################################################
|
|
|
|
if tokenizer.charMode:
|
|
context = tokenizer.refine_context(context)
|
|
ctx = [tokenizer.stoi.get(s, tokenizer.UNKNOWN_CHAR) for s in context]
|
|
else:
|
|
ctx = tokenizer.tokenizer.encode(context)
|
|
src_len = len(ctx)
|
|
src_ctx = ctx.copy()
|
|
|
|
print("\nYour prompt has " + str(src_len) + " tokens.")
|
|
print(
|
|
"\n--> Currently the first run takes a while if your prompt is long, as we are using RNN to process the prompt. Use GPT to build the hidden state for better speed. <--\n"
|
|
)
|
|
|
|
# time_slot = {}
|
|
# time_ref = time.time_ns()
|
|
|
|
# def record_time(name):
|
|
# if name not in time_slot:
|
|
# time_slot[name] = 1e20
|
|
# tt = (time.time_ns() - time_ref) / 1e9
|
|
# if tt < time_slot[name]:
|
|
# time_slot[name] = tt
|
|
|
|
for TRIAL in range(1 if DEBUG_DEBUG else NUM_TRIALS):
|
|
# time_ref = time.time_ns()
|
|
|
|
print(("-" * 50) + context, end="")
|
|
ctx = src_ctx.copy()
|
|
model.clear()
|
|
|
|
if TRIAL == 0:
|
|
init_state = types.SimpleNamespace()
|
|
for i in range(src_len):
|
|
x = ctx[: i + 1]
|
|
if i == src_len - 1:
|
|
init_state.out = model.forward(x)
|
|
else:
|
|
model.forward(x, preprocess_only=True)
|
|
model.save(init_state)
|
|
else:
|
|
model.load(init_state)
|
|
|
|
# record_time('model_pre')
|
|
for i in range(src_len, src_len + (1 if DEBUG_DEBUG else LENGTH_PER_TRIAL)):
|
|
# time_ref = time.time_ns()
|
|
|
|
x = ctx[: i + 1]
|
|
x = x[-ctx_len:]
|
|
|
|
if i == src_len:
|
|
out = copy.deepcopy(init_state.out)
|
|
else:
|
|
out = model.forward(x)
|
|
# record_time('model_run')
|
|
if DEBUG_DEBUG:
|
|
print("model", np.array(x), "==>", np.array(out), np.max(out.cpu().numpy()), np.min(out.cpu().numpy()))
|
|
|
|
if TOKEN_MODE == "pile":
|
|
out[0] = -999999999 # disable <|endoftext|>
|
|
|
|
time_ref = time.time_ns()
|
|
char = tokenizer.sample_logits(
|
|
out,
|
|
x,
|
|
ctx_len,
|
|
temperature=TEMPERATURE,
|
|
top_p_usual=top_p,
|
|
top_p_newline=top_p_newline,
|
|
)
|
|
if tokenizer.charMode:
|
|
print(tokenizer.itos[char], end="", flush=True)
|
|
else:
|
|
print(tokenizer.tokenizer.decode(char), end="", flush=True)
|
|
ctx += [char]
|
|
|
|
# record_time('model_sampling')
|
|
print()
|
|
# print(f'\n\n{time_slot}\n\n')
|
|
# print(
|
|
# f"\n--- preprocess {round((t_mid - t_begin) / (10 ** 9), 2)}s, generation {round((t_end - t_mid) / (10 ** 9), 2)}s", end = ''
|
|
# )
|