diff --git a/merge-weights.py b/merge-weights.py new file mode 100644 index 0000000..35498e7 --- /dev/null +++ b/merge-weights.py @@ -0,0 +1,168 @@ +# Original copyright by Jason Phang +# https://github.com/zphang +# Taken here +# https://github.com/huggingface/transformers/pull/21955/commits/8978f28e6c44b083c0b190d3931902c2904c940a#diff-110a445233a8b15a0875998eeaf75cb8607b38a5daa736291dd058766879bbdd + +import argparse +import json +import os +import shutil +import torch + +""" +Sample usage: + ``` + python merge_weights.py --input_dir D:\Downloads\LLaMA --model_size 13B + ``` +""" + +INTERMEDIATE_SIZE_MAP = { + "7B": 11008, + "13B": 13824, + "30B": 17920, + "65B": 22016, +} + +NUM_SHARDS = { + "7B": 1, + "13B": 2, + "30B": 4, + "65B": 8, +} + + +def read_json(path): + with open(path, "r") as f: + return json.loads(f.read()) + + +def write_model(input_base_path, model_size): + assert model_size in INTERMEDIATE_SIZE_MAP + + params = read_json(os.path.join(input_base_path, "params.json")) + num_shards = NUM_SHARDS[model_size] + n_layers = params["n_layers"] + n_heads = params["n_heads"] + n_heads_per_shard = n_heads // num_shards + dim = params["dim"] + dims_per_head = dim // n_heads + + # Load weights + if model_size == "7B": + loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") + else: + loaded = [ + torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") + for i in range(num_shards) + ] + + state_dict = {} + + for layer_i in range(n_layers): + if model_size == "7B": + state_dict |= { + f"layers.{layer_i}.attention.wq.weight": loaded[ + f"layers.{layer_i}.attention.wq.weight" + ], + f"layers.{layer_i}.attention.wk.weight": loaded[ + f"layers.{layer_i}.attention.wk.weight" + ], + f"layers.{layer_i}.attention.wv.weight": loaded[ + f"layers.{layer_i}.attention.wv.weight" + ], + f"layers.{layer_i}.attention.wo.weight": loaded[ + f"layers.{layer_i}.attention.wo.weight" + ], + f"layers.{layer_i}.feed_forward.w1.weight": loaded[ + f"layers.{layer_i}.feed_forward.w1.weight" + ], + f"layers.{layer_i}.feed_forward.w2.weight": loaded[ + f"layers.{layer_i}.feed_forward.w2.weight" + ], + f"layers.{layer_i}.feed_forward.w3.weight": loaded[ + f"layers.{layer_i}.feed_forward.w3.weight" + ], + f"layers.{layer_i}.attention_norm.weight": loaded[ + f"layers.{layer_i}.attention_norm.weight" + ], + f"layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], + } + else: + state_dict |= { + f"layers.{layer_i}.attention_norm.weight": loaded[0][ + f"layers.{layer_i}.attention_norm.weight" + ], + f"layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"], + } + state_dict[f"layers.{layer_i}.attention.wq.weight"] = torch.cat( + [ + loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) + for i in range(num_shards) + ], + dim=0, + ).reshape(dim, dim) + state_dict[f"layers.{layer_i}.attention.wk.weight"] = torch.cat( + [ + loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) + for i in range(num_shards) + ], + dim=0, + ).reshape(dim, dim) + state_dict[f"layers.{layer_i}.attention.wv.weight"] = torch.cat( + [ + loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) + for i in range(num_shards) + ], + dim=0, + ).reshape(dim, dim) + state_dict[f"layers.{layer_i}.attention.wo.weight"] = torch.cat( + [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 + ) + state_dict[f"layers.{layer_i}.feed_forward.w1.weight"] = torch.cat( + [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 + ) + state_dict[f"layers.{layer_i}.feed_forward.w2.weight"] = torch.cat( + [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 + ) + state_dict[f"layers.{layer_i}.feed_forward.w3.weight"] = torch.cat( + [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 + ) + + if model_size == "7B": + state_dict |= { + "tok_embeddings.weight": loaded["tok_embeddings.weight"], + "norm.weight": loaded["norm.weight"], + "output.weight": loaded["output.weight"], + } + else: + state_dict |= { + "norm.weight": loaded[0]["norm.weight"], + "tok_embeddings.weight": torch.cat( + [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 + ), + "output.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), + } + + torch.save(state_dict, 'merged.pth') + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--input_dir", + help="Location of LLaMA weights, which contains tokenizer.model and model folders", + ) + parser.add_argument( + "--model_size", + choices=["7B", "13B", "30B", "65B"], + ) + args = parser.parse_args() + + write_model( + input_base_path=os.path.join(args.input_dir, args.model_size), + model_size=args.model_size, + ) + + +if __name__ == "__main__": + main()