import llamahf import os # # to save memory use bfloat16 # import torch # torch.set_default_dtype(torch.bfloat16) MODEL = 'decapoda-research/llama-7b-hf' # MODEL = 'decapoda-research/llama-13b-hf' # MODEL = 'decapoda-research/llama-30b-hf' # MODEL = 'decapoda-research/llama-65b-hf' if os.path.exists('./trained'): MODEL = './trained' tokenizer = llamahf.LLaMATokenizer.from_pretrained(MODEL) model = llamahf.LLaMAForCausalLM.from_pretrained(MODEL, low_cpu_mem_usage=True) model.to('cpu') batch = tokenizer("The highest mountain in China is ", return_tensors="pt") print(tokenizer.decode(model.generate(batch["input_ids"].cpu(), do_sample=True, top_k=50, max_length=100, top_p=0.95, temperature=1.0)[0]))