# Original copyright by Jason Phang # https://github.com/zphang # Taken here # https://github.com/huggingface/transformers/pull/21955/commits/8978f28e6c44b083c0b190d3931902c2904c940a#diff-110a445233a8b15a0875998eeaf75cb8607b38a5daa736291dd058766879bbdd import argparse import json import os import shutil import torch """ Sample usage: ``` python merge_weights.py --input_dir D:\Downloads\LLaMA --model_size 13B ``` """ INTERMEDIATE_SIZE_MAP = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, } NUM_SHARDS = { "7B": 1, "13B": 2, "30B": 4, "65B": 8, } def read_json(path): with open(path, "r") as f: return json.loads(f.read()) def write_model(input_base_path, model_size): assert model_size in INTERMEDIATE_SIZE_MAP params = read_json(os.path.join(input_base_path, "params.json")) num_shards = NUM_SHARDS[model_size] n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads # Load weights if model_size == "7B": loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") else: loaded = [ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") for i in range(num_shards) ] state_dict = {} for layer_i in range(n_layers): if model_size == "7B": state_dict |= { f"layers.{layer_i}.attention.wq.weight": loaded[ f"layers.{layer_i}.attention.wq.weight" ], f"layers.{layer_i}.attention.wk.weight": loaded[ f"layers.{layer_i}.attention.wk.weight" ], f"layers.{layer_i}.attention.wv.weight": loaded[ f"layers.{layer_i}.attention.wv.weight" ], f"layers.{layer_i}.attention.wo.weight": loaded[ f"layers.{layer_i}.attention.wo.weight" ], f"layers.{layer_i}.feed_forward.w1.weight": loaded[ f"layers.{layer_i}.feed_forward.w1.weight" ], f"layers.{layer_i}.feed_forward.w2.weight": loaded[ f"layers.{layer_i}.feed_forward.w2.weight" ], f"layers.{layer_i}.feed_forward.w3.weight": loaded[ f"layers.{layer_i}.feed_forward.w3.weight" ], f"layers.{layer_i}.attention_norm.weight": loaded[ f"layers.{layer_i}.attention_norm.weight" ], f"layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: state_dict |= { f"layers.{layer_i}.attention_norm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ], f"layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"], } state_dict[f"layers.{layer_i}.attention.wq.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) state_dict[f"layers.{layer_i}.attention.wk.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) state_dict[f"layers.{layer_i}.attention.wv.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) state_dict[f"layers.{layer_i}.attention.wo.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"layers.{layer_i}.feed_forward.w1.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"layers.{layer_i}.feed_forward.w2.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"layers.{layer_i}.feed_forward.w3.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 ) if model_size == "7B": state_dict |= { "tok_embeddings.weight": loaded["tok_embeddings.weight"], "norm.weight": loaded["norm.weight"], "output.weight": loaded["output.weight"], } else: state_dict |= { "norm.weight": loaded[0]["norm.weight"], "tok_embeddings.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 ), "output.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), } torch.save(state_dict, 'merged.pth') def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "13B", "30B", "65B"], ) args = parser.parse_args() write_model( input_base_path=os.path.join(args.input_dir, args.model_size), model_size=args.model_size, ) if __name__ == "__main__": main()