You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
10 KiB
Python
276 lines
10 KiB
Python
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import json
|
|
import os
|
|
import shutil
|
|
|
|
import torch
|
|
|
|
|
|
"""
|
|
Sample usage:
|
|
|
|
```
|
|
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
|
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
|
```
|
|
|
|
Thereafter, models can be loaded via:
|
|
|
|
```
|
|
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/")
|
|
|
|
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/")
|
|
```
|
|
"""
|
|
|
|
INTERMEDIATE_SIZE_MAP = {
|
|
"7B": 11008,
|
|
"13B": 13824,
|
|
"30B": 17920,
|
|
"65B": 22016,
|
|
}
|
|
NUM_SHARDS = {
|
|
"7B": 1,
|
|
"13B": 2,
|
|
"30B": 4,
|
|
"65B": 8,
|
|
}
|
|
|
|
|
|
def read_json(path):
|
|
with open(path, "r") as f:
|
|
return json.load(f)
|
|
|
|
|
|
def write_json(text, path):
|
|
with open(path, "w") as f:
|
|
json.dump(text, f)
|
|
|
|
|
|
def write_model(model_path, input_base_path, model_size):
|
|
assert model_size in INTERMEDIATE_SIZE_MAP
|
|
os.makedirs(model_path, exist_ok=True)
|
|
|
|
params = read_json(os.path.join(input_base_path, "params.json"))
|
|
num_shards = NUM_SHARDS[model_size]
|
|
n_layers = params["n_layers"]
|
|
n_heads = params["n_heads"]
|
|
n_heads_per_shard = n_heads // num_shards
|
|
dim = params["dim"]
|
|
dims_per_head = dim // n_heads
|
|
base = 10000.0
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
|
|
|
# permute for sliced rotary
|
|
def permute(w):
|
|
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
|
|
|
# Load weights
|
|
if model_size == "7B":
|
|
# Not shared
|
|
# (The sharded implementation would also work, but this is simpler.)
|
|
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
|
else:
|
|
# Sharded
|
|
loaded = [
|
|
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
|
|
for i in range(num_shards)
|
|
]
|
|
param_count = 0
|
|
index_dict = {"weight_map": {}}
|
|
for layer_i in range(n_layers):
|
|
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
|
layer_i + 1,
|
|
n_layers + 1,
|
|
)
|
|
if model_size == "7B":
|
|
# Unsharded
|
|
state_dict = {
|
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
|
loaded[f"layers.{layer_i}.attention.wq.weight"]
|
|
),
|
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
|
loaded[f"layers.{layer_i}.attention.wk.weight"]
|
|
),
|
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
|
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
|
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
|
}
|
|
else:
|
|
# Sharded
|
|
state_dict = {
|
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"],
|
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
|
f"layers.{layer_i}.ffn_norm.weight"
|
|
],
|
|
}
|
|
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
|
torch.cat(
|
|
[
|
|
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
|
for i in range(num_shards)
|
|
],
|
|
dim=0,
|
|
).reshape(dim, dim)
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
|
torch.cat(
|
|
[
|
|
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
|
for i in range(num_shards)
|
|
],
|
|
dim=0,
|
|
).reshape(dim, dim)
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
|
[
|
|
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
|
for i in range(num_shards)
|
|
],
|
|
dim=0,
|
|
).reshape(dim, dim)
|
|
|
|
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
|
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
|
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
|
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
|
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
|
)
|
|
|
|
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
|
for k, v in state_dict.items():
|
|
index_dict["weight_map"][k] = filename
|
|
param_count += v.numel()
|
|
torch.save(state_dict, os.path.join(model_path, filename))
|
|
|
|
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
|
n_layers + 1,
|
|
n_layers + 1,
|
|
)
|
|
if model_size == "7B":
|
|
# Unsharded
|
|
state_dict = {
|
|
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
|
"model.norm.weight": loaded["norm.weight"],
|
|
"lm_head.weight": loaded["output.weight"],
|
|
}
|
|
else:
|
|
state_dict = {
|
|
"model.norm.weight": loaded[0]["norm.weight"],
|
|
"model.embed_tokens.weight": torch.cat(
|
|
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
|
|
),
|
|
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
|
|
}
|
|
|
|
for k, v in state_dict.items():
|
|
index_dict["weight_map"][k] = filename
|
|
param_count += v.numel()
|
|
torch.save(state_dict, os.path.join(model_path, filename))
|
|
|
|
# Write configs
|
|
index_dict["metadata"] = {"total_size": param_count * 2}
|
|
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
|
|
config_out = {
|
|
"architectures": ["LLaMAForCausalLM"],
|
|
"bos_token_id": 0,
|
|
"eos_token_id": 1,
|
|
"hidden_act": "silu",
|
|
"hidden_size": params["dim"],
|
|
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size],
|
|
"initializer_range": 0.02,
|
|
"max_sequence_length": 2048,
|
|
"model_type": "llama",
|
|
"num_attention_heads": params["n_heads"],
|
|
"num_hidden_layers": params["n_layers"],
|
|
"pad_token_id": -1,
|
|
"rms_norm_eps": params["norm_eps"],
|
|
"torch_dtype": "float16",
|
|
"transformers_version": "4.27.0.dev0",
|
|
"use_cache": True,
|
|
"vocab_size": 32000,
|
|
}
|
|
write_json(
|
|
config_out,
|
|
os.path.join(model_path, "config.json"),
|
|
)
|
|
generation_config = {
|
|
"_from_model_config": True,
|
|
"bos_token_id": 0,
|
|
"eos_token_id": 1,
|
|
"pad_token_id": 0,
|
|
"transformers_version": "4.27.0.dev0",
|
|
}
|
|
write_json(
|
|
generation_config,
|
|
os.path.join(model_path, "generation_config.json"),
|
|
)
|
|
|
|
|
|
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
|
os.makedirs(tokenizer_path, exist_ok=True)
|
|
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
|
|
write_json(
|
|
{
|
|
"bos_token": "",
|
|
"eos_token": "",
|
|
"model_max_length": int(1e30),
|
|
"tokenizer_class": "LLaMATokenizer",
|
|
"unk_token": "",
|
|
},
|
|
os.path.join(tokenizer_path, "tokenizer_config.json"),
|
|
)
|
|
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--input_dir",
|
|
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
|
)
|
|
parser.add_argument(
|
|
"--model_size",
|
|
choices=["7B", "13B", "30B", "65B"],
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
help="Location to write HF model and tokenizer",
|
|
)
|
|
args = parser.parse_args()
|
|
write_model(
|
|
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
|
|
input_base_path=os.path.join(args.input_dir, args.model_size),
|
|
model_size=args.model_size,
|
|
)
|
|
write_tokenizer(
|
|
tokenizer_path=os.path.join(args.output_dir, "tokenizer"),
|
|
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |