From 89deefc049ceeccaa78bd603db7b3f56a2118ccf Mon Sep 17 00:00:00 2001 From: randaller Date: Sat, 4 Mar 2023 13:41:04 +0300 Subject: [PATCH] run on cpu --- llama/model.py | 74 ++++++++++++++++++++++---------------------------- 1 file changed, 32 insertions(+), 42 deletions(-) diff --git a/llama/model.py b/llama/model.py index 03a72da..c1c6ddd 100755 --- a/llama/model.py +++ b/llama/model.py @@ -9,13 +9,6 @@ import torch from torch import nn import torch.nn.functional as F -import fairscale.nn.model_parallel.initialize as fs_init -from fairscale.nn.model_parallel.layers import ( - ParallelEmbedding, - RowParallelLinear, - ColumnParallelLinear, -) - @dataclass class ModelArgs: @@ -61,9 +54,9 @@ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): def apply_rotary_emb( - xq: torch.Tensor, - xk: torch.Tensor, - freqs_cis: torch.Tensor, + xq: torch.Tensor, + xk: torch.Tensor, + freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) @@ -77,44 +70,40 @@ class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() - self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size() + # self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size() + self.n_local_heads = args.n_heads self.head_dim = args.dim // args.n_heads - self.wq = ColumnParallelLinear( + self.wq = nn.Linear( args.dim, args.n_heads * self.head_dim, bias=False, - gather_output=False, - init_method=lambda x: x, ) - self.wk = ColumnParallelLinear( + + self.wk = nn.Linear( args.dim, args.n_heads * self.head_dim, bias=False, - gather_output=False, - init_method=lambda x: x, ) - self.wv = ColumnParallelLinear( + + self.wv = nn.Linear( args.dim, args.n_heads * self.head_dim, bias=False, - gather_output=False, - init_method=lambda x: x, ) - self.wo = RowParallelLinear( + + self.wo = nn.Linear( args.n_heads * self.head_dim, args.dim, bias=False, - input_is_parallel=True, - init_method=lambda x: x, ) self.cache_k = torch.zeros( (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) - ).cuda() + ).cpu() self.cache_v = torch.zeros( (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) - ).cuda() + ).cpu() def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): bsz, seqlen, _ = x.shape @@ -129,8 +118,8 @@ class Attention(nn.Module): self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) - self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk - self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv + self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk + self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] @@ -152,23 +141,23 @@ class Attention(nn.Module): class FeedForward(nn.Module): def __init__( - self, - dim: int, - hidden_dim: int, - multiple_of: int, + self, + dim: int, + hidden_dim: int, + multiple_of: int, ): super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) - self.w1 = ColumnParallelLinear( - dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x + self.w1 = nn.Linear( + dim, hidden_dim, bias=False, ) - self.w2 = RowParallelLinear( - hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x + self.w2 = nn.Linear( + hidden_dim, dim, bias=False, ) - self.w3 = ColumnParallelLinear( - dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x + self.w3 = nn.Linear( + dim, hidden_dim, bias=False, ) def forward(self, x): @@ -202,8 +191,8 @@ class Transformer(nn.Module): self.vocab_size = params.vocab_size self.n_layers = params.n_layers - self.tok_embeddings = ParallelEmbedding( - params.vocab_size, params.dim, init_method=lambda x: x + self.tok_embeddings = nn.Embedding( + params.vocab_size, params.dim ) self.layers = torch.nn.ModuleList() @@ -211,8 +200,9 @@ class Transformer(nn.Module): self.layers.append(TransformerBlock(layer_id, params)) self.norm = RMSNorm(params.dim, eps=params.norm_eps) - self.output = ColumnParallelLinear( - params.dim, params.vocab_size, bias=False, init_method=lambda x: x + + self.output = nn.Linear( + params.dim, params.vocab_size, bias=False, ) self.freqs_cis = precompute_freqs_cis( @@ -224,7 +214,7 @@ class Transformer(nn.Module): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) self.freqs_cis = self.freqs_cis.to(h.device) - freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] + freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen] mask = None if seqlen > 1: