# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from typing import Tuple import os import sys import torch import fire import time import json from pathlib import Path from fairscale.nn.model_parallel.initialize import initialize_model_parallel from llama import ModelArgs, Transformer, Tokenizer, LLaMA def setup_model_parallel() -> Tuple[int, int]: local_rank = int(os.environ.get("LOCAL_RANK", -1)) world_size = int(os.environ.get("WORLD_SIZE", -1)) torch.distributed.init_process_group("gloo") initialize_model_parallel(world_size) print('Setup parallel complete!') # torch.cuda.set_device(local_rank) # seed must be the same in all processes torch.manual_seed(1) return local_rank, world_size def load( ckpt_dir: str, tokenizer_path: str, local_rank: int, world_size: int, max_seq_len: int, max_batch_size: int, ) -> LLaMA: start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert world_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}" ckpt_path = checkpoints[local_rank] print("Loading") checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params ) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words # torch.set_default_tensor_type(torch.cuda.HalfTensor) torch.set_default_tensor_type(torch.BFloat16Tensor) model = Transformer(model_args) torch.set_default_tensor_type(torch.FloatTensor) model.load_state_dict(checkpoint, strict=False) generator = LLaMA(model, tokenizer) print(f"Loaded in {time.time() - start_time:.2f} seconds") return generator def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.8, top_p: float = 0.95, max_seq_len: int = 512, max_batch_size: int = 32, ): local_rank, world_size = setup_model_parallel() if local_rank > 0: sys.stdout = open(os.devnull, "w") generator = load( ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size ) prompts = ["I believe the meaning of life is"] # results = generator.generate( # prompts, max_gen_len=256, temperature=temperature, top_p=top_p # ) results = generator.generate( prompts, max_gen_len=512, temperature=temperature, top_p=top_p ) for result in results: print(result) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)