# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from typing import Tuple import os import sys import torch import fire import time import json from pathlib import Path from llama import ModelArgs, Transformer, Tokenizer, LLaMA def load( ckpt_dir: str, tokenizer_path: str, max_seq_len: int, max_batch_size: int, ) -> LLaMA: start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) ckpt_path = checkpoints[-1] print("Loading model...") checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params ) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words model = Transformer(model_args) model.to("cpu") model.load_state_dict(checkpoint, strict=False) generator = LLaMA(model, tokenizer) print(f"Loaded model in {time.time() - start_time:.2f} seconds") return generator def main( ckpt_dir: str = './model', tokenizer_path: str = './tokenizer/tokenizer.model', temperature: float = 0.8, top_p: float = 0.95, max_seq_len: int = 2048, max_batch_size: int = 32, ): # torch.manual_seed(1) # torch.set_default_dtype(torch.bfloat16) generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size) while True: prompt = input(f'prompt> ') if len(prompt.strip()) > 0: prompts = [prompt] results = generator.generate( prompts, max_gen_len=256, temperature=temperature, top_p=top_p ) for result in results: print(result) if __name__ == "__main__": fire.Fire(main)