# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from typing import Tuple import os import sys import torch import fire import time import json from pathlib import Path from fairscale.nn.model_parallel.initialize import initialize_model_parallel from llama import ModelArgs, Transformer, Tokenizer, LLaMA def setup_model_parallel() -> Tuple[int, int]: local_rank = int(os.environ.get("LOCAL_RANK", -1)) world_size = int(os.environ.get("WORLD_SIZE", -1)) torch.distributed.init_process_group("nccl") initialize_model_parallel(world_size) torch.cuda.set_device(local_rank) # seed must be the same in all processes torch.manual_seed(1) return local_rank, world_size def load( ckpt_dir: str, tokenizer_path: str, local_rank: int, world_size: int, max_seq_len: int, max_batch_size: int, ) -> LLaMA: start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert world_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}" ckpt_path = checkpoints[local_rank] print("Loading") checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params ) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words torch.set_default_tensor_type(torch.cuda.HalfTensor) model = Transformer(model_args) torch.set_default_tensor_type(torch.FloatTensor) model.load_state_dict(checkpoint, strict=False) generator = LLaMA(model, tokenizer) print(f"Loaded in {time.time() - start_time:.2f} seconds") return generator def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.8, top_p: float = 0.95, max_seq_len: int = 512, max_batch_size: int = 32, ): local_rank, world_size = setup_model_parallel() if local_rank > 0: sys.stdout = open(os.devnull, "w") generator = load( ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size ) prompts = [ # For these prompts, the expected answer is the natural continuation of the prompt "I believe the meaning of life is", "Simply put, the theory of relativity states that ", "Building a website can be done in 10 simple steps:\n", # Few shot prompts: https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api """Tweet: "I hate it when my phone battery dies." Sentiment: Negative ### Tweet: "My day has been 👍" Sentiment: Positive ### Tweet: "This is the link to the article" Sentiment: Neutral ### Tweet: "This new music video was incredibile" Sentiment:""", """Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese =>""", ] results = generator.generate( prompts, max_gen_len=256, temperature=temperature, top_p=top_p ) for result in results: print(result) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)