You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
2.9 KiB
Python
103 lines
2.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
|
|
|
from typing import Tuple
|
|
import os
|
|
import sys
|
|
import torch
|
|
import fire
|
|
import time
|
|
import json
|
|
from pathlib import Path
|
|
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
|
|
|
|
|
def load(
|
|
ckpt_dir: str,
|
|
tokenizer_path: str,
|
|
max_seq_len: int,
|
|
max_batch_size: int,
|
|
) -> LLaMA:
|
|
start_time = time.time()
|
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
ckpt_path = checkpoints[-1]
|
|
|
|
print("Loading model...")
|
|
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
|
params = json.loads(f.read())
|
|
|
|
model_args: ModelArgs = ModelArgs(
|
|
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
|
)
|
|
|
|
tokenizer = Tokenizer(model_path=tokenizer_path)
|
|
|
|
model_args.vocab_size = tokenizer.n_words
|
|
|
|
model = Transformer(model_args)
|
|
model.to("cpu")
|
|
model.load_state_dict(checkpoint, strict=False)
|
|
|
|
generator = LLaMA(model, tokenizer)
|
|
print(f"Loaded model in {time.time() - start_time:.2f} seconds")
|
|
return generator
|
|
|
|
|
|
def main(
|
|
ckpt_dir: str = './model',
|
|
tokenizer_path: str = './tokenizer/tokenizer.model',
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
max_seq_len: int = 512,
|
|
max_batch_size: int = 32,
|
|
):
|
|
# torch.manual_seed(1)
|
|
# torch.set_default_dtype(torch.bfloat16)
|
|
|
|
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
|
|
|
|
prompts = [
|
|
##### For these prompts, the expected answer is the natural continuation of the prompt #####
|
|
|
|
"I believe the meaning of life is",
|
|
# "Simply put, the theory of relativity states that ",
|
|
# "Building a website can be done in 10 simple steps:\n",
|
|
|
|
##### Few shot prompts: https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api #####
|
|
|
|
# """Tweet: "I hate it when my phone battery dies."
|
|
# Sentiment: Negative
|
|
# ###
|
|
# Tweet: "My day has been 👍"
|
|
# Sentiment: Positive
|
|
# ###
|
|
# Tweet: "This is the link to the article"
|
|
# Sentiment: Neutral
|
|
# ###
|
|
# Tweet: "This new music video was incredibile"
|
|
# Sentiment:""",
|
|
|
|
# """Translate English to French:
|
|
# sea otter => loutre de mer
|
|
# peppermint => menthe poivrée
|
|
# plush girafe => girafe peluche
|
|
# cheese =>""",
|
|
]
|
|
|
|
start_time = time.time()
|
|
|
|
results = generator.generate(
|
|
prompts, max_gen_len=256, temperature=temperature, top_p=top_p
|
|
)
|
|
|
|
for result in results:
|
|
print(result)
|
|
print("\n==================================")
|
|
|
|
print(f"Inference took {time.time() - start_time:.2f} seconds")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|