You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
7.4 KiB
Python
228 lines
7.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
|
|
|
from typing import Optional, Tuple
|
|
from dataclasses import dataclass
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
dim: int = 512
|
|
n_layers: int = 8
|
|
n_heads: int = 8
|
|
vocab_size: int = -1 # defined later by tokenizer
|
|
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
|
norm_eps: float = 1e-5
|
|
|
|
max_batch_size: int = 32
|
|
max_seq_len: int = 1024
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
|
return freqs_cis
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
|
ndim = x.ndim
|
|
assert 0 <= 1 < ndim
|
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|
return freqs_cis.view(*shape)
|
|
|
|
|
|
def apply_rotary_emb(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.n_local_heads = args.n_heads
|
|
self.head_dim = args.dim // args.n_heads
|
|
|
|
self.wq = nn.Linear(
|
|
args.dim,
|
|
args.n_heads * self.head_dim,
|
|
bias=False,
|
|
)
|
|
|
|
self.wk = nn.Linear(
|
|
args.dim,
|
|
args.n_heads * self.head_dim,
|
|
bias=False,
|
|
)
|
|
|
|
self.wv = nn.Linear(
|
|
args.dim,
|
|
args.n_heads * self.head_dim,
|
|
bias=False,
|
|
)
|
|
|
|
self.wo = nn.Linear(
|
|
args.n_heads * self.head_dim,
|
|
args.dim,
|
|
bias=False,
|
|
)
|
|
|
|
self.cache_k = torch.zeros(
|
|
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
|
).cpu()
|
|
self.cache_v = torch.zeros(
|
|
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
|
).cpu()
|
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
|
bsz, seqlen, _ = x.shape
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
|
|
|
self.cache_k = self.cache_k.to(xq)
|
|
self.cache_v = self.cache_v.to(xq)
|
|
|
|
self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk
|
|
self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv
|
|
|
|
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
|
values = self.cache_v[:bsz, : start_pos + seqlen]
|
|
|
|
xq = xq.transpose(1, 2)
|
|
keys = keys.transpose(1, 2)
|
|
values = values.transpose(1, 2)
|
|
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
if mask is not None:
|
|
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
|
output = output.transpose(
|
|
1, 2
|
|
).contiguous().view(bsz, seqlen, -1)
|
|
|
|
return self.wo(output)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
multiple_of: int,
|
|
):
|
|
super().__init__()
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.w1 = nn.Linear(
|
|
dim, hidden_dim, bias=False,
|
|
)
|
|
self.w2 = nn.Linear(
|
|
hidden_dim, dim, bias=False,
|
|
)
|
|
self.w3 = nn.Linear(
|
|
dim, hidden_dim, bias=False,
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, layer_id: int, args: ModelArgs):
|
|
super().__init__()
|
|
self.n_heads = args.n_heads
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.attention = Attention(args)
|
|
self.feed_forward = FeedForward(
|
|
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of
|
|
)
|
|
self.layer_id = layer_id
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
|
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask)
|
|
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
|
return out
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, params: ModelArgs):
|
|
super().__init__()
|
|
self.params = params
|
|
self.vocab_size = params.vocab_size
|
|
self.n_layers = params.n_layers
|
|
|
|
self.tok_embeddings = nn.Embedding(
|
|
params.vocab_size, params.dim
|
|
)
|
|
|
|
self.layers = torch.nn.ModuleList()
|
|
for layer_id in range(params.n_layers):
|
|
self.layers.append(TransformerBlock(layer_id, params))
|
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
|
|
|
self.output = nn.Linear(
|
|
params.dim, params.vocab_size, bias=False,
|
|
)
|
|
|
|
self.freqs_cis = precompute_freqs_cis(
|
|
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def forward(self, tokens: torch.Tensor, start_pos: int):
|
|
_bsz, seqlen = tokens.shape
|
|
h = self.tok_embeddings(tokens)
|
|
self.freqs_cis = self.freqs_cis.to(h.device)
|
|
freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen]
|
|
|
|
mask = None
|
|
if seqlen > 1:
|
|
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
|
|
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
|
|
|
for layer in self.layers:
|
|
h = layer(h, start_pos, freqs_cis, mask)
|
|
h = self.norm(h)
|
|
output = self.output(h[:, -1, :]) # only compute last logits
|
|
return output.float()
|