Compare commits

..

No commits in common. 'master' and 'master-a140219' have entirely different histories.

@ -16,7 +16,11 @@ elif [[ $arg1 == '--quantize' || $arg1 == '-q' ]]; then
./quantize $arg2
elif [[ $arg1 == '--run' || $arg1 == '-r' ]]; then
./main $arg2
elif [[ $arg1 == '--download' || $arg1 == '-d' ]]; then
python3 ./download-pth.py $arg2
elif [[ $arg1 == '--all-in-one' || $arg1 == '-a' ]]; then
echo "Downloading model..."
python3 ./download-pth.py "$1" "$2"
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
if [ -f "${i/f16/q4_0}" ]; then
@ -35,6 +39,8 @@ else
echo " ex: \"/models/7B/\" 1"
echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --all-in-one (-a): Execute --convert & --quantize"
echo " --download (-d): Download original llama model from CDN: https://agi.gpt4.org/llama/"
echo " ex: \"/models/\" 7B"
echo " --all-in-one (-a): Execute --download, --convert & --quantize"
echo " ex: \"/models/\" 7B"
fi

@ -218,9 +218,6 @@ add_library(utils OBJECT
target_include_directories(utils PUBLIC .)
target_compile_features(utils PUBLIC cxx_std_11) # don't bump
target_link_libraries(utils PRIVATE ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(utils PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
add_library(ggml OBJECT
ggml.c
@ -229,9 +226,6 @@ add_library(ggml OBJECT
target_include_directories(ggml PUBLIC .)
target_compile_features(ggml PUBLIC c_std_11) # don't bump
target_link_libraries(ggml PRIVATE Threads::Threads ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
add_library(llama
llama.cpp
@ -240,10 +234,6 @@ add_library(llama
target_include_directories(llama PUBLIC .)
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
target_link_libraries(llama PRIVATE utils ggml ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
endif()
#
# Executables

@ -7,8 +7,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
**Hot topics:**
- [Roadmap (short-term)](https://github.com/ggerganov/llama.cpp/discussions/457)
- New C-style API is now available: https://github.com/ggerganov/llama.cpp/pull/370
- [Added Alpaca support](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- Cache input prompts for faster initialization: https://github.com/ggerganov/llama.cpp/issues/64
- Create a `llama.cpp` logo: https://github.com/ggerganov/llama.cpp/issues/105
@ -220,7 +220,7 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data
* The LLaMA models are officially distributed by Facebook and will never be provided through this repository. See this [pull request in Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to obtain access to the model data.
* Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
* Please verify the sha256 checksums of all of your `consolidated*.pth` and corresponding converted `ggml-model-*.bin` model files to confirm that you have the correct model data files before creating an issue relating to your model files.
* The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory:
`sha256sum --ignore-missing -c SHA256SUMS` on Linux

@ -1,20 +0,0 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

@ -36,8 +36,7 @@ fname_out = sys.argv[3]
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", n_vocab))
fout.write(struct.pack("i", n_embd))
fout.write(struct.pack("i", n_mult))
@ -50,21 +49,27 @@ fout.write(struct.pack("i", 4))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
# "<unk>" token (translated as ??)
text = " \u2047 ".encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
elif tokenizer.is_control(i):
text = b""
# "<s>"/"</s>" tokens
fout.write(struct.pack("i", 0))
elif tokenizer.is_byte(i):
# "<U+XX>" tokens (which may be invalid UTF-8)
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
print("Invalid token: " + piece)
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
fout.write(struct.pack("i", 1))
fout.write(struct.pack("B", byte_value))
else:
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
fout.write(struct.pack("i", len(text)))
fout.write(text)
def write_header(shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')

@ -0,0 +1,66 @@
import os
import sys
from tqdm import tqdm
import requests
if len(sys.argv) < 3:
print("Usage: download-pth.py dir-model model-type\n")
print(" model-type: Available models 7B, 13B, 30B or 65B")
sys.exit(1)
modelsDir = sys.argv[1]
model = sys.argv[2]
num = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
if model not in num:
print(f"Error: model {model} is not valid, provide 7B, 13B, 30B or 65B")
sys.exit(1)
print(f"Downloading model {model}")
files = ["checklist.chk", "params.json"]
for i in range(num[model]):
files.append(f"consolidated.0{i}.pth")
resolved_path = os.path.abspath(os.path.join(modelsDir, model))
os.makedirs(resolved_path, exist_ok=True)
for file in files:
dest_path = os.path.join(resolved_path, file)
if os.path.exists(dest_path):
print(f"Skip file download, it already exists: {file}")
continue
url = f"https://agi.gpt4.org/llama/LLaMA/{model}/{file}"
response = requests.get(url, stream=True)
with open(dest_path, 'wb') as f:
with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
t.update(len(chunk))
files2 = ["tokenizer_checklist.chk", "tokenizer.model"]
for file in files2:
dest_path = os.path.join(modelsDir, file)
if os.path.exists(dest_path):
print(f"Skip file download, it already exists: {file}")
continue
url = f"https://agi.gpt4.org/llama/LLaMA/{file}"
response = requests.get(url, stream=True)
with open(dest_path, 'wb') as f:
with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
t.update(len(chunk))

@ -28,8 +28,8 @@
];
installPhase = ''
mkdir -p $out/bin
mv bin/main $out/bin/llama
mv bin/quantize $out/bin/quantize
mv llama $out/bin/llama
mv quantize $out/bin/quantize
echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml
chmod +x $out/bin/convert-pth-to-ggml

@ -727,13 +727,11 @@ static bool llama_eval_internal(
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);

@ -258,9 +258,6 @@ int main(int argc, char ** argv) {
params.interactive = true;
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
@ -362,16 +359,6 @@ int main(int argc, char ** argv) {
last_n_tokens.push_back(id);
}
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive) {
id = llama_token_newline.front();
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
}
}
// add it to the context
embd.push_back(id);
@ -464,8 +451,12 @@ int main(int argc, char ** argv) {
// end of text token
if (embd.back() == llama_token_eos()) {
fprintf(stderr, " [end of text]\n");
break;
if (params.interactive) {
is_interacting = true;
} else {
fprintf(stderr, " [end of text]\n");
break;
}
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.

@ -57,7 +57,6 @@ def main():
# )
args = parser.parse_args()
args.models_path = os.path.abspath(args.models_path)
if not os.path.isfile(args.quantize_script_path):
print(

@ -26,95 +26,41 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency());
}
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.seed = std::stoi(argv[i]);
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.prompt = argv[i];
params.prompt = argv[++i];
} else if (arg == "-f" || arg == "--file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
std::ifstream file(argv[++i]);
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-n" || arg == "--n_predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.top_k = std::stoi(argv[i]);
params.top_k = std::stoi(argv[++i]);
} else if (arg == "-c" || arg == "--ctx_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
params.n_ctx = std::stoi(argv[++i]);
} else if (arg == "--memory_f16") {
params.memory_f16 = true;
} else if (arg == "--top_p") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.top_p = std::stof(argv[i]);
params.top_p = std::stof(argv[++i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.temp = std::stof(argv[i]);
params.temp = std::stof(argv[++i]);
} else if (arg == "--repeat_last_n") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.repeat_last_n = std::stoi(argv[i]);
params.repeat_last_n = std::stoi(argv[++i]);
} else if (arg == "--repeat_penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.repeat_penalty = std::stof(argv[i]);
params.repeat_penalty = std::stof(argv[++i]);
} else if (arg == "-b" || arg == "--batch_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
params.model = argv[++i];
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "--interactive-first") {
@ -124,21 +70,13 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else if (arg == "--color") {
params.use_color = true;
} else if (arg == "-r" || arg == "--reverse-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.antiprompt.push_back(argv[i]);
params.antiprompt.push_back(argv[++i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "--n_parts") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parts = std::stoi(argv[i]);
params.n_parts = std::stoi(argv[++i]);
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
@ -147,14 +85,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(1);
exit(0);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(1);
}
return true;
}

Loading…
Cancel
Save