|
|
|
|
@ -19,8 +19,10 @@ from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
|
|
|
from transformers import AutoFeatureExtractor
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
|
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
|
|
|
|
# load safety model
|
|
|
|
|
safety_model_id = "CompVis/stable-diffusion-v-1-3"
|
|
|
|
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, use_auth_token=True)
|
|
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, use_auth_token=True)
|
|
|
|
|
|
|
|
|
|
def chunk(it, size):
|
|
|
|
|
it = iter(it)
|
|
|
|
|
@ -266,16 +268,23 @@ def main():
|
|
|
|
|
|
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
x_image = x_samples_ddim
|
|
|
|
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
|
|
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
|
|
|
|
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 2, 1)
|
|
|
|
|
|
|
|
|
|
if not opt.skip_save:
|
|
|
|
|
for x_sample in x_samples_ddim:
|
|
|
|
|
for x_sample in x_checked_image_torch:
|
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
|
|
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
|
|
|
|
os.path.join(sample_path, f"{base_count:05}.png"))
|
|
|
|
|
base_count += 1
|
|
|
|
|
|
|
|
|
|
if not opt.skip_grid:
|
|
|
|
|
all_samples.append(x_samples_ddim)
|
|
|
|
|
all_samples.append(x_checked_image_torch)
|
|
|
|
|
|
|
|
|
|
if not opt.skip_grid:
|
|
|
|
|
# additionally, save as grid
|
|
|
|
|
@ -288,12 +297,6 @@ def main():
|
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
|
|
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
# run safety checker
|
|
|
|
|
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
|
|
|
|
|
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
|
f" \nEnjoy.")
|
|
|
|
|
|
|
|
|
|
|