main
Patrick von Platen 3 years ago
parent d0c714ae4a
commit eef5da90db

@ -19,8 +19,10 @@ from ldm.models.diffusion.plms import PLMSSampler
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
# load safety model
safety_model_id = "CompVis/stable-diffusion-v-1-3"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, use_auth_token=True)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, use_auth_token=True)
def chunk(it, size):
it = iter(it)
@ -266,16 +268,23 @@ def main():
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_image = x_samples_ddim
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 2, 1)
if not opt.skip_save:
for x_sample in x_samples_ddim:
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
if not opt.skip_grid:
all_samples.append(x_samples_ddim)
all_samples.append(x_checked_image_torch)
if not opt.skip_grid:
# additionally, save as grid
@ -288,12 +297,6 @@ def main():
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
# run safety checker
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")

Loading…
Cancel
Save