fixed nan in large models

main
BlinkDL 4 years ago
parent f80ff53595
commit 440bebff1a

@ -14,9 +14,10 @@ logger = logging.getLogger(__name__)
########################################################################################################
class RWKV_TimeMix(nn.Module):
def __init__(self, config):
def __init__(self, config, layer_id):
super().__init__()
assert config.n_embd % config.n_head == 0
self.layer_id = layer_id
self.ctx_size = config.ctx_size
self.n_head = config.n_head
self.head_size = config.n_embd // config.n_head
@ -63,8 +64,9 @@ class RWKV_TimeMix(nn.Module):
return y
class RWKV_ChannelMix(nn.Module):
def __init__(self, config):
def __init__(self, config, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0,0,1,0))
self.key = nn.Linear(config.n_embd, 3 * config.n_embd)
@ -265,7 +267,7 @@ class RMSNorm(nn.Module):
x_normed = x / (norm_x * self.dd + 1e-12)
return self.weight * x_normed
class SimpleRMSNorm(nn.Module):
class FixedNorm(nn.Module):
def __init__(self, d):
super().__init__()
self.dd = d ** (-1. / 2)
@ -285,18 +287,17 @@ class GPTConfig:
setattr(self, k, v)
class Block(nn.Module):
def __init__(self, config):
def __init__(self, config, layer_id):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
if config.model_type == 'RWKV':
self.ln1 = nn.Identity()
# self.ln1 = SimpleRMSNorm(config.n_embd) # turn on this if you see nan in large RWKV models
self.ln2 = SimpleRMSNorm(config.n_embd)
self.attn = RWKV_TimeMix(config)
self.mlp = RWKV_ChannelMix(config)
self.ln1 = FixedNorm(config.n_embd)
self.ln2 = FixedNorm(config.n_embd)
self.attn = RWKV_TimeMix(config, layer_id)
self.mlp = RWKV_ChannelMix(config, layer_id)
elif config.model_type == 'RotaryMHA':
self.attn = RotaryMHA(config)
self.mlp = GeGLU(config)
@ -305,6 +306,7 @@ class Block(nn.Module):
self.mlp = RWKV_ChannelMix(config)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
@ -317,10 +319,10 @@ class GPT(nn.Module):
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
self.blocks = nn.Sequential(*[Block(config, i) for i in range(config.n_layer)])
if config.model_type == 'RWKV':
self.ln_f = SimpleRMSNorm(config.n_embd)
self.ln_f = FixedNorm(config.n_embd)
else:
self.ln_f = nn.LayerNorm(config.n_embd)
@ -329,15 +331,23 @@ class GPT(nn.Module):
self.ctx_size = config.ctx_size
self.apply(self._init_weights)
if self.config.model_type == 'RWKV':
if self.config.model_type == 'RWKV': # improve orthogonal weight init
ww = self.state_dict()
for k in ww: # reduce weight to avoid nan
if 'receptance.weight' in k:
ww[k] /= math.pow(config.n_embd, 0.5)
elif 'key.weight' in k:
ww[k] /= math.pow(config.n_embd, 0.25)
elif 'value.weight' in k:
ww[k] /= math.pow(config.n_embd, 0.25)
for k in ww:
if 'tok_emb' in k:
if self.config.vocab_size > self.config.n_embd:
ww[k] *= math.sqrt(self.config.vocab_size)
else:
ww[k] *= math.sqrt(self.config.n_embd)
ww[k] *= 0.4
elif 'head.weight' in k:
ww[k] *= 0.2
elif 'blocks.' in k:
block_id = int(k.split('.')[1])
if 'receptance.weight' in k:
ww[k] *= 0.5
elif 'attn.key.weight' in k:
ww[k] *= 0.2
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
@ -347,14 +357,14 @@ class GPT(nn.Module):
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
if self.config.model_type == 'RWKV':
gain = 1.0
if isinstance(module, nn.Linear):
gain_layer = min(3, module.weight.shape[0] / module.weight.shape[1])
depth_factor = 1 # min(1, 1 / math.sqrt(self.config.n_layer / 5))
nn.init.orthogonal_(module.weight, gain = gain_layer * depth_factor)
else:
nn.init.orthogonal_(module.weight, gain = 1.0)
if module.weight.data.shape[0] > module.weight.data.shape[1]:
gain = math.sqrt(module.weight.data.shape[0] / module.weight.data.shape[1])
nn.init.orthogonal_(module.weight, gain=gain)
else:
module.weight.data.normal_(mean=0.0, std=0.01)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@ -400,10 +410,10 @@ class GPT(nn.Module):
x = self.blocks(x)
x = self.ln_f(x)
logits = self.head(x)
x = self.head(x)
loss = None
if targets is not None:
loss = LabelSmoothingCrossEntropy(smoothing=1e-6)(logits.view(-1, logits.size(-1)), targets.view(-1))
loss = LabelSmoothingCrossEntropy(smoothing=1e-6)(x.view(-1, x.size(-1)), targets.view(-1))
return logits, loss
return x, loss

@ -29,21 +29,21 @@ model_level = 'character' # 'character' or 'word'
ctx_size = 256 if model_level == 'character' else 128
nLayers = 5
nHead = 8 # if you see nan in large RWKV models, turn on 'self.ln1' in model.py
nHead = 8
nEmb = nHead * 64
lr_initial = 6e-4 if model_type == 'RWKV' else 4e-4 # RWKV can use higher lr
lr_initial = 6e-4 if model_type == 'RWKV' else 4e-4 # RWKV can use higher lr
lr_final = 2e-4
lr_initial /= math.sqrt(nLayers / 5) # lower lr for deep models; higher lr for shallow models
lr_initial /= math.sqrt(nLayers / 5) # lower lr for deep models; higher lr for shallow models
lr_final /= math.sqrt(nLayers / 5)
betas = (0.9, 0.99)
weight_decay = 0 if model_type == 'RWKV' else 0.01 # seems wd is not very useful when we have enough data
weight_decay = 0 if model_type == 'RWKV' else 0.01 # seems wd is not very useful when we have enough data
nepoch = 50 # just a quick test. the 'epoch' here is very short
nepoch = 50 # just a quick test. the 'epoch' here is very short
nbatchsz = 64
epoch_length_fixed = 10000 # make an 'epoch' very short, so we can see the training progress
epoch_length_fixed = 10000 # make an 'epoch' very short, so we can see the training progress
########################################################################################################
# Load data

Loading…
Cancel
Save