Compare commits
No commits in common. 'main' and '4.00' have entirely different histories.
|
Before Width: | Height: | Size: 161 KiB |
|
Before Width: | Height: | Size: 67 KiB |
|
Before Width: | Height: | Size: 410 KiB After Width: | Height: | Size: 1.1 MiB |
|
Before Width: | Height: | Size: 359 KiB After Width: | Height: | Size: 153 KiB |
|
Before Width: | Height: | Size: 69 KiB |
|
Before Width: | Height: | Size: 90 KiB |
|
Before Width: | Height: | Size: 66 KiB |
@ -1,132 +0,0 @@
|
|||||||
#include <stdio.h>
|
|
||||||
#include <assert.h>
|
|
||||||
#include "ATen/ATen.h"
|
|
||||||
#define MIN_VALUE (-1e38)
|
|
||||||
typedef at::BFloat16 bf16;
|
|
||||||
|
|
||||||
__global__ void kernel_forward(const int B, const int T, const int C,
|
|
||||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
|
||||||
bf16 *__restrict__ const _y) {
|
|
||||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int _b = idx / C;
|
|
||||||
const int _c = idx % C;
|
|
||||||
const int _offset = _b * T * C + _c;
|
|
||||||
|
|
||||||
float u = float(_u[_c]);
|
|
||||||
float w = _w[_c];
|
|
||||||
const bf16 *__restrict__ const k = _k + _offset;
|
|
||||||
const bf16 *__restrict__ const v = _v + _offset;
|
|
||||||
bf16 *__restrict__ const y = _y + _offset;
|
|
||||||
|
|
||||||
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
|
|
||||||
float aa = 0, bb = 0, pp = MIN_VALUE;
|
|
||||||
for (int i = 0; i < T; i++) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = float(k[ii]);
|
|
||||||
const float vv = float(v[ii]);
|
|
||||||
|
|
||||||
float ww = u + kk;
|
|
||||||
float p = max(pp, ww);
|
|
||||||
float e1 = exp(pp - p);
|
|
||||||
float e2 = exp(ww - p);
|
|
||||||
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
|
||||||
|
|
||||||
ww = w + pp;
|
|
||||||
p = max(ww, kk);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = exp(kk - p);
|
|
||||||
aa = e1 * aa + e2 * vv;
|
|
||||||
bb = e1 * bb + e2;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__global__ void kernel_backward(const int B, const int T, const int C,
|
|
||||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
|
||||||
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
|
|
||||||
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
|
|
||||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int _b = idx / C;
|
|
||||||
const int _c = idx % C;
|
|
||||||
const int _offset = _b * T * C + _c;
|
|
||||||
|
|
||||||
float u = float(_u[_c]);
|
|
||||||
float w = _w[_c];
|
|
||||||
const bf16 *__restrict__ const k = _k + _offset;
|
|
||||||
const bf16 *__restrict__ const v = _v + _offset;
|
|
||||||
const bf16 *__restrict__ const y = _y + _offset;
|
|
||||||
const bf16 *__restrict__ const gy = _gy + _offset;
|
|
||||||
bf16 *__restrict__ const gk = _gk + _offset;
|
|
||||||
bf16 *__restrict__ const gv = _gv + _offset;
|
|
||||||
|
|
||||||
float q[Tmax], r[Tmax];
|
|
||||||
|
|
||||||
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
|
|
||||||
for (int i = 0; i < T; i++) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = float(k[ii]);
|
|
||||||
const float vv = float(v[ii]);
|
|
||||||
const float yy = float(y[ii]);
|
|
||||||
|
|
||||||
float ww = u + kk;
|
|
||||||
float p = max(pp, ww);
|
|
||||||
float e1 = exp(pp - p);
|
|
||||||
float e2 = exp(ww - p);
|
|
||||||
const float qq = float(gy[ii]) / (e1 * bb + e2);
|
|
||||||
gw += (ga - gb * yy) * e1 * qq;
|
|
||||||
gu += (vv - yy) * e2 * qq;
|
|
||||||
q[i] = qq;
|
|
||||||
r[i] = ww - p;
|
|
||||||
|
|
||||||
ww = w + pp;
|
|
||||||
p = max(ww, kk);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = exp(kk - p);
|
|
||||||
ga = e1 * (aa + ga);
|
|
||||||
gb = e1 * (bb + gb);
|
|
||||||
aa = e1 * aa + e2 * vv;
|
|
||||||
bb = e1 * bb + e2;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
const int _offsetBC = _b * C + _c;
|
|
||||||
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
|
|
||||||
_gu[_offsetBC] = bf16(gu);
|
|
||||||
|
|
||||||
aa = 0, bb = 0, pp = MIN_VALUE;
|
|
||||||
for (int i = T - 1; i >= 0; i--) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = float(k[ii]);
|
|
||||||
const float vv = float(v[ii]);
|
|
||||||
const float yy = float(y[ii]);
|
|
||||||
const float qq = q[i];
|
|
||||||
const float rr = r[i];
|
|
||||||
|
|
||||||
float e1 = qq * exp(rr);
|
|
||||||
float e2 = exp(kk + pp);
|
|
||||||
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
|
|
||||||
gv[ii] = bf16(e1 + e2 * aa);
|
|
||||||
|
|
||||||
const float ww = w + pp;
|
|
||||||
const float www = rr - u - kk;
|
|
||||||
const float p = max(ww, www);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = qq * exp(www - p);
|
|
||||||
aa = e1 * aa + e2;
|
|
||||||
bb = e1 * bb - e2 * yy;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
|
|
||||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
|
||||||
assert(B * C % threadsPerBlock.x == 0);
|
|
||||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
|
||||||
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
|
|
||||||
}
|
|
||||||
|
|
||||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
|
|
||||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
|
||||||
assert(B * C % threadsPerBlock.x == 0);
|
|
||||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
|
||||||
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
|
|
||||||
}
|
|
||||||
@ -1,25 +0,0 @@
|
|||||||
#include <torch/extension.h>
|
|
||||||
#include "ATen/ATen.h"
|
|
||||||
typedef at::BFloat16 bf16;
|
|
||||||
|
|
||||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
|
|
||||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
|
|
||||||
|
|
||||||
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
|
|
||||||
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
|
|
||||||
}
|
|
||||||
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
|
||||||
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
|
|
||||||
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
|
|
||||||
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
|
|
||||||
}
|
|
||||||
|
|
||||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
||||||
m.def("forward", &forward, "wkv forward");
|
|
||||||
m.def("backward", &backward, "wkv backward");
|
|
||||||
}
|
|
||||||
|
|
||||||
TORCH_LIBRARY(wkv, m) {
|
|
||||||
m.def("forward", forward);
|
|
||||||
m.def("backward", backward);
|
|
||||||
}
|
|
||||||
@ -1,104 +0,0 @@
|
|||||||
########################################################################################################
|
|
||||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
# this is for verifying the results of different models and make sure they agree with each other
|
|
||||||
|
|
||||||
import os, sys, types
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
||||||
try:
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1]
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
torch.backends.cudnn.benchmark = True
|
|
||||||
torch.backends.cudnn.allow_tf32 = False
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = False
|
|
||||||
|
|
||||||
os.environ['RWKV_FLOAT_MODE'] = 'bf16' # bf16 or fp32
|
|
||||||
os.environ['RWKV_RUN_DEVICE'] = 'cuda' # currently model_train requires CUDA
|
|
||||||
RUN_DEVICE = os.environ['RWKV_RUN_DEVICE']
|
|
||||||
|
|
||||||
TOKEN_MODE = 'pile'
|
|
||||||
|
|
||||||
if TOKEN_MODE == 'pile':
|
|
||||||
WORD_NAME = ['20B_tokenizer.json', '20B_tokenizer.json']
|
|
||||||
MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-3b/RWKV-4-Pile-3B-20221003-6783'
|
|
||||||
n_layer = 32
|
|
||||||
n_embd = 2560
|
|
||||||
ctx_len = 1024
|
|
||||||
UNKNOWN_CHAR = None
|
|
||||||
|
|
||||||
from src.utils import TOKENIZER
|
|
||||||
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)
|
|
||||||
if TOKEN_MODE == 'pile':
|
|
||||||
tokenizer.vocab_size = 50277
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
os.environ["RWKV_JIT_ON"] = "1"
|
|
||||||
os.environ["RWKV_T_MAX"] = str(ctx_len)
|
|
||||||
|
|
||||||
from src.model_run import RWKV_RNN
|
|
||||||
from src.model import RWKV
|
|
||||||
|
|
||||||
args = types.SimpleNamespace()
|
|
||||||
args.vocab_size = tokenizer.vocab_size
|
|
||||||
args.ctx_len = ctx_len
|
|
||||||
args.n_embd = n_embd
|
|
||||||
args.n_layer = n_layer
|
|
||||||
args.head_qk = 0
|
|
||||||
args.pre_ffn = 0
|
|
||||||
args.grad_cp = 0
|
|
||||||
args.my_pos_emb = 0
|
|
||||||
model_train = RWKV(args).to(RUN_DEVICE)
|
|
||||||
|
|
||||||
if os.environ['RWKV_FLOAT_MODE'] == 'fp16':
|
|
||||||
model_train = model_train.half()
|
|
||||||
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
|
|
||||||
model_train = model_train.bfloat16()
|
|
||||||
|
|
||||||
print('loading ' + MODEL_NAME)
|
|
||||||
m2 = torch.load(MODEL_NAME + '.pth', map_location='cpu')
|
|
||||||
model_train.load_state_dict(m2)
|
|
||||||
|
|
||||||
if os.environ['RWKV_FLOAT_MODE'] == 'fp16':
|
|
||||||
model_train = model_train.half()
|
|
||||||
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
|
|
||||||
model_train = model_train.bfloat16()
|
|
||||||
|
|
||||||
args.MODEL_NAME = MODEL_NAME
|
|
||||||
args.RUN_DEVICE = RUN_DEVICE
|
|
||||||
args.FLOAT_MODE = os.environ['RWKV_FLOAT_MODE']
|
|
||||||
model_rnn = RWKV_RNN(args)
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
print(f"\nVerifying {os.environ['RWKV_RUN_DEVICE']} {os.environ['RWKV_FLOAT_MODE']}")
|
|
||||||
|
|
||||||
# context = '\nIn a'
|
|
||||||
context = '\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.'
|
|
||||||
|
|
||||||
if TOKEN_MODE == 'pile':
|
|
||||||
ctx = tokenizer.tokenizer.encode(context)
|
|
||||||
print(f'input len {len(ctx)} data {ctx}')
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
print('\nRWKV-train output')
|
|
||||||
out = model_train.forward(torch.tensor([ctx]).to(RUN_DEVICE))[0].detach().cpu().float().numpy()
|
|
||||||
print(out, '\n')
|
|
||||||
|
|
||||||
print('\nRWKV-RNN output')
|
|
||||||
state = None
|
|
||||||
out = None
|
|
||||||
src_len = len(ctx)
|
|
||||||
for i in range(src_len):
|
|
||||||
x = ctx[:i+1]
|
|
||||||
out, state = model_rnn.forward(x, state)
|
|
||||||
if i < 3 or i >= src_len - 3:
|
|
||||||
print(out.detach().cpu().numpy())
|
|
||||||
if i == 2:
|
|
||||||
print('...')
|
|
||||||