hf version
parent
3cf2b0cf1f
commit
1e052d8053
@ -0,0 +1,76 @@
|
||||
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers.utils import (
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
is_torch_available,
|
||||
is_sentencepiece_available,
|
||||
)
|
||||
|
||||
|
||||
_import_structure = {
|
||||
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LLaMAConfig"],
|
||||
}
|
||||
|
||||
try:
|
||||
if not is_sentencepiece_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["tokenization_llama"] = ["LLaMATokenizer"]
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["modeling_llama"] = [
|
||||
"LLaMAForCausalLM",
|
||||
"LLaMAModel",
|
||||
"LLaMAPreTrainedModel",
|
||||
]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LLaMAConfig
|
||||
|
||||
try:
|
||||
if not is_sentencepiece_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .tokenization_llama import LLaMATokenizer
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .modeling_llama import (
|
||||
LLaMAForCausalLM,
|
||||
LLaMAModel,
|
||||
LLaMAPreTrainedModel,
|
||||
)
|
||||
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
||||
@ -0,0 +1,112 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" LLaMA model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class LLaMAConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`~LLaMAModel`]. It is used to instantiate an LLaMA
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the LLaMA-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`~LLaMAModel`] or [`~TFLLaMAModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import LLaMAModel, LLaMAConfig
|
||||
|
||||
>>> # Initializing a LLaMA llama-7b style configuration
|
||||
>>> configuration = LLaMAConfig()
|
||||
|
||||
>>> # Initializing a model from the llama-7b style configuration
|
||||
>>> model = LLaMAModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "llama"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
hidden_act="silu",
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=-1,
|
||||
bos_token_id=0,
|
||||
eos_token_id=1,
|
||||
tie_word_embeddings=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
@ -0,0 +1,276 @@
|
||||
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
"""
|
||||
Sample usage:
|
||||
|
||||
```
|
||||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
||||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
||||
```
|
||||
|
||||
Thereafter, models can be loaded via:
|
||||
|
||||
```
|
||||
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/")
|
||||
|
||||
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/")
|
||||
```
|
||||
"""
|
||||
|
||||
INTERMEDIATE_SIZE_MAP = {
|
||||
"7B": 11008,
|
||||
"13B": 13824,
|
||||
"30B": 17920,
|
||||
"65B": 22016,
|
||||
}
|
||||
NUM_SHARDS = {
|
||||
"7B": 1,
|
||||
"13B": 2,
|
||||
"30B": 4,
|
||||
"65B": 8,
|
||||
}
|
||||
|
||||
|
||||
def read_json(path):
|
||||
with open(path, "r") as f:
|
||||
return json.load(f)
|
||||
|
||||
|
||||
def write_json(text, path):
|
||||
with open(path, "w") as f:
|
||||
json.dump(text, f)
|
||||
|
||||
|
||||
def write_model(model_path, input_base_path, model_size):
|
||||
assert model_size in INTERMEDIATE_SIZE_MAP
|
||||
os.makedirs(model_path, exist_ok=True)
|
||||
|
||||
params = read_json(os.path.join(input_base_path, "params.json"))
|
||||
num_shards = NUM_SHARDS[model_size]
|
||||
n_layers = params["n_layers"]
|
||||
n_heads = params["n_heads"]
|
||||
n_heads_per_shard = n_heads // num_shards
|
||||
dim = params["dim"]
|
||||
dims_per_head = dim // n_heads
|
||||
base = 10000.0
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
||||
|
||||
# permute for sliced rotary
|
||||
def permute(w):
|
||||
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
||||
|
||||
# Load weights
|
||||
if model_size == "7B":
|
||||
# Not shared
|
||||
# (The sharded implementation would also work, but this is simpler.)
|
||||
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
||||
else:
|
||||
# Sharded
|
||||
loaded = [
|
||||
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
|
||||
for i in range(num_shards)
|
||||
]
|
||||
param_count = 0
|
||||
index_dict = {"weight_map": {}}
|
||||
for layer_i in range(n_layers):
|
||||
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
||||
layer_i + 1,
|
||||
n_layers + 1,
|
||||
)
|
||||
if model_size == "7B":
|
||||
# Unsharded
|
||||
state_dict = {
|
||||
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
||||
loaded[f"layers.{layer_i}.attention.wq.weight"]
|
||||
),
|
||||
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
||||
loaded[f"layers.{layer_i}.attention.wk.weight"]
|
||||
),
|
||||
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
||||
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
||||
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
||||
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
||||
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
||||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
||||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
||||
}
|
||||
else:
|
||||
# Sharded
|
||||
state_dict = {
|
||||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"],
|
||||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
||||
f"layers.{layer_i}.ffn_norm.weight"
|
||||
],
|
||||
}
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
||||
torch.cat(
|
||||
[
|
||||
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
||||
for i in range(num_shards)
|
||||
],
|
||||
dim=0,
|
||||
).reshape(dim, dim)
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
||||
torch.cat(
|
||||
[
|
||||
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
||||
for i in range(num_shards)
|
||||
],
|
||||
dim=0,
|
||||
).reshape(dim, dim)
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
||||
[
|
||||
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
||||
for i in range(num_shards)
|
||||
],
|
||||
dim=0,
|
||||
).reshape(dim, dim)
|
||||
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
||||
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
||||
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
||||
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
||||
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
||||
)
|
||||
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
||||
for k, v in state_dict.items():
|
||||
index_dict["weight_map"][k] = filename
|
||||
param_count += v.numel()
|
||||
torch.save(state_dict, os.path.join(model_path, filename))
|
||||
|
||||
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
||||
n_layers + 1,
|
||||
n_layers + 1,
|
||||
)
|
||||
if model_size == "7B":
|
||||
# Unsharded
|
||||
state_dict = {
|
||||
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
||||
"model.norm.weight": loaded["norm.weight"],
|
||||
"lm_head.weight": loaded["output.weight"],
|
||||
}
|
||||
else:
|
||||
state_dict = {
|
||||
"model.norm.weight": loaded[0]["norm.weight"],
|
||||
"model.embed_tokens.weight": torch.cat(
|
||||
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
|
||||
),
|
||||
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
|
||||
}
|
||||
|
||||
for k, v in state_dict.items():
|
||||
index_dict["weight_map"][k] = filename
|
||||
param_count += v.numel()
|
||||
torch.save(state_dict, os.path.join(model_path, filename))
|
||||
|
||||
# Write configs
|
||||
index_dict["metadata"] = {"total_size": param_count * 2}
|
||||
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
|
||||
config_out = {
|
||||
"architectures": ["LLaMAForCausalLM"],
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": 1,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": params["dim"],
|
||||
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size],
|
||||
"initializer_range": 0.02,
|
||||
"max_sequence_length": 2048,
|
||||
"model_type": "llama",
|
||||
"num_attention_heads": params["n_heads"],
|
||||
"num_hidden_layers": params["n_layers"],
|
||||
"pad_token_id": -1,
|
||||
"rms_norm_eps": params["norm_eps"],
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.27.0.dev0",
|
||||
"use_cache": True,
|
||||
"vocab_size": 32000,
|
||||
}
|
||||
write_json(
|
||||
config_out,
|
||||
os.path.join(model_path, "config.json"),
|
||||
)
|
||||
generation_config = {
|
||||
"_from_model_config": True,
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": 1,
|
||||
"pad_token_id": 0,
|
||||
"transformers_version": "4.27.0.dev0",
|
||||
}
|
||||
write_json(
|
||||
generation_config,
|
||||
os.path.join(model_path, "generation_config.json"),
|
||||
)
|
||||
|
||||
|
||||
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
||||
os.makedirs(tokenizer_path, exist_ok=True)
|
||||
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
|
||||
write_json(
|
||||
{
|
||||
"bos_token": "",
|
||||
"eos_token": "",
|
||||
"model_max_length": int(1e30),
|
||||
"tokenizer_class": "LLaMATokenizer",
|
||||
"unk_token": "",
|
||||
},
|
||||
os.path.join(tokenizer_path, "tokenizer_config.json"),
|
||||
)
|
||||
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--input_dir",
|
||||
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_size",
|
||||
choices=["7B", "13B", "30B", "65B"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
help="Location to write HF model and tokenizer",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
write_model(
|
||||
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
|
||||
input_base_path=os.path.join(args.input_dir, args.model_size),
|
||||
model_size=args.model_size,
|
||||
)
|
||||
write_tokenizer(
|
||||
tokenizer_path=os.path.join(args.output_dir, "tokenizer"),
|
||||
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -0,0 +1,833 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch LLaMA model."""
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from .configuration_llama import LLaMAConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "llama-7b"
|
||||
_CONFIG_FOR_DOC = "LLaMAConfig"
|
||||
|
||||
|
||||
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
|
||||
"""
|
||||
Make causal mask used for bi-directional self-attention.
|
||||
"""
|
||||
bsz, tgt_len = input_ids_shape
|
||||
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
|
||||
mask_cond = torch.arange(mask.size(-1))
|
||||
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
||||
mask = mask.to(dtype)
|
||||
|
||||
if past_key_values_length > 0:
|
||||
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
|
||||
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
||||
|
||||
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
RMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class RotaryEmbedding(torch.nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||
super().__init__()
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||||
self.register_buffer("inv_freq", inv_freq)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
||||
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.cos_cached = emb.cos()[None, None, :, :]
|
||||
self.sin_cached = emb.sin()[None, None, :, :]
|
||||
|
||||
def forward(self, x, seq_len=None):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
||||
if seq_len > self.max_seq_len_cached:
|
||||
self.max_seq_len_cached = seq_len
|
||||
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
||||
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
||||
self.cos_cached = emb.cos()[None, None, :, :].to(dtype=x.dtype)
|
||||
self.sin_cached = emb.sin()[None, None, :, :].to(dtype=x.dtype)
|
||||
return (
|
||||
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype, device=x.device),
|
||||
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype, device=x.device),
|
||||
)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
|
||||
cos = cos[..., offset : q.shape[-2] + offset, :]
|
||||
sin = sin[..., offset : q.shape[-2] + offset, :]
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class LLaMAMLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
||||
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class LLaMAAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = hidden_size // num_heads
|
||||
|
||||
if (self.head_dim * num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {num_heads})."
|
||||
)
|
||||
self.q_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.k_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.v_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.o_proj = nn.Linear(
|
||||
num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
offset = 0
|
||||
if past_key_value is not None:
|
||||
offset = past_key_value[0].shape[-2]
|
||||
kv_seq_len += offset
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, offset=offset)
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states)
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
class LLaMADecoderLayer(nn.Module):
|
||||
def __init__(self, config: LLaMAConfig):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = LLaMAAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.mlp = LLaMAMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
past_key_value=past_key_value,
|
||||
attention_mask=attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
LLAMA_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`LLaMAConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
|
||||
LLAMA_START_DOCSTRING,
|
||||
)
|
||||
class LLaMAPreTrainedModel(PreTrainedModel):
|
||||
config_class = LLaMAConfig
|
||||
base_model_prefix = "model"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["LLaMADecoderLayer"]
|
||||
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
std = self.config.initializer_range
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, (LLaMADecoderLayer)):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
|
||||
LLAMA_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||||
LLAMA_START_DOCSTRING,
|
||||
)
|
||||
class LLaMAModel(LLaMAPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaMADecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: LLaMAConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: LLaMAConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([LLaMADecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
||||
).to(inputs_embeds.device)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||||
inputs_embeds.device
|
||||
)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device)
|
||||
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class LLaMAForCausalLM(LLaMAPreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = LLaMAModel(config)
|
||||
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
||||
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, LLaMAForCausalLM
|
||||
|
||||
>>> model = LLaMAForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
||||
|
||||
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
||||
```"""
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||||
return reordered_past
|
||||
@ -0,0 +1,215 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization classes for LLaMA."""
|
||||
import os
|
||||
import re
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {}
|
||||
|
||||
|
||||
class LLaMATokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a LLaMA tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
Path to the vocabulary file.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token="",
|
||||
bos_token=" ⁇ ",
|
||||
eos_token="",
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||||
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
||||
self.vocab_file = vocab_file
|
||||
self.add_bos_token = add_bos_token
|
||||
self.add_eos_token = add_eos_token
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.Load(vocab_file)
|
||||
|
||||
""" Initialisation"""
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
"""Returns vocab size"""
|
||||
return self.sp_model.get_piece_size()
|
||||
|
||||
@property
|
||||
def bos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.bos_id()
|
||||
|
||||
@property
|
||||
def eos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.eos_id()
|
||||
|
||||
def get_vocab(self):
|
||||
"""Returns vocab as a dict"""
|
||||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Returns a tokenized string."""
|
||||
return self.sp_model.encode(text, out_type=str)
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.sp_model.piece_to_id(token)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
token = self.sp_model.IdToPiece(index)
|
||||
return token
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
current_sub_tokens = []
|
||||
out_string = ""
|
||||
prev_is_special = False
|
||||
for token in tokens:
|
||||
# make sure that special tokens are not decoded using sentencepiece model
|
||||
if token in self.all_special_tokens:
|
||||
if not prev_is_special:
|
||||
out_string += " "
|
||||
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||||
prev_is_special = True
|
||||
current_sub_tokens = []
|
||||
else:
|
||||
current_sub_tokens.append(token)
|
||||
prev_is_special = False
|
||||
out_string += self.sp_model.decode(current_sub_tokens)
|
||||
return out_string.strip()
|
||||
|
||||
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
elif not os.path.isfile(self.vocab_file):
|
||||
with open(out_vocab_file, "wb") as fi:
|
||||
content_spiece_model = self.sp_model.serialized_model_proto()
|
||||
fi.write(content_spiece_model)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
if self.add_bos_token:
|
||||
bos_token_ids = [self.bos_token_id]
|
||||
else:
|
||||
bos_token_ids = []
|
||||
|
||||
output = bos_token_ids + token_ids_0
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + token_ids_1
|
||||
|
||||
if self.add_eos_token:
|
||||
output = output + [self.eos_token_id]
|
||||
|
||||
return output
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
||||
use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of zeros.
|
||||
"""
|
||||
eos = [self.eos_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(token_ids_0 + eos) * [0]
|
||||
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
||||
Loading…
Reference in New Issue