Create hf-training-example.py
parent
a80a606685
commit
972b214b09
@ -0,0 +1,72 @@
|
||||
import llamahf
|
||||
import torch
|
||||
import pandas as pd
|
||||
from torch.utils.data import Dataset, random_split
|
||||
from transformers import TrainingArguments, Trainer
|
||||
|
||||
MODEL = 'decapoda-research/llama-7b-hf'
|
||||
DATA_FILE_PATH = 'datasets/elon_musk_tweets.csv'
|
||||
OUTPUT_DIR = './trained'
|
||||
|
||||
texts = pd.read_csv(DATA_FILE_PATH)['text']
|
||||
|
||||
tokenizer = llamahf.LLaMATokenizer.from_pretrained(MODEL)
|
||||
model = llamahf.LLaMAForCausalLM.from_pretrained(MODEL).cpu()
|
||||
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
class TextDataset(Dataset):
|
||||
def __init__(self, txt_list, tokenizer, max_length):
|
||||
self.labels = []
|
||||
self.input_ids = []
|
||||
self.attn_masks = []
|
||||
for txt in txt_list:
|
||||
encodings_dict = tokenizer(txt, truncation=True, max_length=max_length, padding="max_length")
|
||||
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
|
||||
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
|
||||
|
||||
def __len__(self): return len(self.input_ids)
|
||||
|
||||
def __getitem__(self, idx): return self.input_ids[idx], self.attn_masks[idx]
|
||||
|
||||
|
||||
dataset = TextDataset(texts, tokenizer, max_length=max([len(tokenizer.encode(text)) for text in texts]))
|
||||
train_dataset, val_dataset = random_split(dataset, [int(0.9 * len(dataset)), len(dataset) - int(0.9 * len(dataset))])
|
||||
|
||||
training_args = TrainingArguments(
|
||||
save_steps=5000,
|
||||
warmup_steps=10,
|
||||
logging_steps=100,
|
||||
weight_decay=0.05,
|
||||
num_train_epochs=1,
|
||||
logging_dir='./logs',
|
||||
output_dir=OUTPUT_DIR,
|
||||
no_cuda=True,
|
||||
# bf16=True,
|
||||
per_device_eval_batch_size=1,
|
||||
per_device_train_batch_size=1)
|
||||
|
||||
trainer = Trainer(model=model,
|
||||
args=training_args,
|
||||
eval_dataset=val_dataset,
|
||||
train_dataset=train_dataset,
|
||||
data_collator=lambda data: {'input_ids': torch.stack([f[0] for f in data]),
|
||||
'attention_mask': torch.stack([f[1] for f in data]),
|
||||
'labels': torch.stack([f[0] for f in data])})
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model()
|
||||
tokenizer.save_pretrained(OUTPUT_DIR)
|
||||
del trainer
|
||||
|
||||
sample_outputs = model.generate(tokenizer('', return_tensors="pt").input_ids.cpu(),
|
||||
do_sample=True,
|
||||
top_k=50,
|
||||
max_length=300,
|
||||
top_p=0.95,
|
||||
temperature=1.0)
|
||||
|
||||
print(tokenizer.decode(sample_outputs[0]))
|
||||
Loading…
Reference in New Issue