Create example.py
parent
cb395a25ae
commit
a7d7801dbd
@ -0,0 +1,111 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||
|
||||
from typing import Tuple
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import fire
|
||||
import time
|
||||
import json
|
||||
import pyarrow as pa
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
||||
|
||||
|
||||
def load(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
) -> LLaMA:
|
||||
start_time = time.time()
|
||||
arrow_dir = Path(ckpt_dir).expanduser() / 'arrow'
|
||||
|
||||
if not arrow_dir.exists():
|
||||
print('Converting checkpoints to arrow format')
|
||||
checkpoints = sorted(Path(ckpt_dir).expanduser().glob("*.pth"))
|
||||
for ckpt_file in checkpoints:
|
||||
print(ckpt_file)
|
||||
index = ckpt_file.parts[-1].split('.')[-2]
|
||||
|
||||
ckpt = torch.load(ckpt_file, map_location='cpu')
|
||||
(arrow_dir / index).mkdir(parents=True, exist_ok=True)
|
||||
for k, v in ckpt.items():
|
||||
tens = pa.Tensor.from_numpy(v.numpy())
|
||||
with pa.output_stream(arrow_dir / index / k) as f:
|
||||
pa.ipc.write_tensor(tens, f)
|
||||
ckpt = None
|
||||
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
print("Loading checkpoint")
|
||||
segments = sorted((arrow_dir / '00').glob("*"))
|
||||
# print(segments)
|
||||
|
||||
checkpoint = {}
|
||||
files = []
|
||||
for seg in segments:
|
||||
f = pa.memory_map(str(seg))
|
||||
files.append(f)
|
||||
t = pa.ipc.read_tensor(f).to_numpy()
|
||||
t = torch.from_numpy(t)
|
||||
checkpoint[seg.parts[-1]] = t
|
||||
|
||||
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
# torch.set_default_tensor_type(torch.FloatTensor)
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||
)
|
||||
print("Loading tokenizer")
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
model_args.vocab_size = tokenizer.n_words
|
||||
print("Loading model")
|
||||
model = Transformer(model_args)
|
||||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
model.load_state_dict(torch.load(checkpoints[-1]), strict=False)
|
||||
|
||||
for f in files:
|
||||
f.close()
|
||||
files = None
|
||||
|
||||
generator = LLaMA(model, tokenizer)
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
return generator
|
||||
|
||||
|
||||
def main(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.95,
|
||||
max_seq_len: int = 2048,
|
||||
max_batch_size: int = 1, # 16 for 13B, 4 for 30B and 65B (for 512 seq)
|
||||
):
|
||||
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
|
||||
|
||||
prompts = [
|
||||
# For these prompts, the expected answer is the natural continuation of the prompt
|
||||
# "I believe the meaning of life is",
|
||||
|
||||
"""Write the Python code with detailed comments to generate 256 random integers in the range from -128 to 512, inclusive.
|
||||
\\begin{code}\n""",
|
||||
]
|
||||
results = generator.generate(
|
||||
prompts, max_gen_len=max_seq_len, temperature=temperature, top_p=top_p
|
||||
)
|
||||
|
||||
for result in results:
|
||||
print("\n==================================\n")
|
||||
print(result)
|
||||
print("\n==================================\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
Loading…
Reference in New Issue