Create example-multi.py
parent
39a6ddfddc
commit
5ab0a33073
@ -0,0 +1,98 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||
|
||||
from typing import Tuple
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import fire
|
||||
import time
|
||||
import json
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
||||
|
||||
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
||||
|
||||
|
||||
def setup_model_parallel() -> Tuple[int, int]:
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
||||
|
||||
torch.distributed.init_process_group("gloo")
|
||||
initialize_model_parallel(world_size)
|
||||
print('Setup parallel complete!')
|
||||
# torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(1)
|
||||
return local_rank, world_size
|
||||
|
||||
|
||||
def load(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
local_rank: int,
|
||||
world_size: int,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
) -> LLaMA:
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert world_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
|
||||
ckpt_path = checkpoints[local_rank]
|
||||
print("Loading")
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
model_args.vocab_size = tokenizer.n_words
|
||||
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
model = Transformer(model_args)
|
||||
torch.set_default_tensor_type(torch.FloatTensor)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
generator = LLaMA(model, tokenizer)
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
return generator
|
||||
|
||||
|
||||
def main(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.95,
|
||||
max_seq_len: int = 512,
|
||||
max_batch_size: int = 32,
|
||||
):
|
||||
local_rank, world_size = setup_model_parallel()
|
||||
if local_rank > 0:
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
generator = load(
|
||||
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
|
||||
)
|
||||
|
||||
prompts = ["I believe the meaning of life is"]
|
||||
# results = generator.generate(
|
||||
# prompts, max_gen_len=256, temperature=temperature, top_p=top_p
|
||||
# )
|
||||
results = generator.generate(
|
||||
prompts, max_gen_len=512, temperature=temperature, top_p=top_p
|
||||
)
|
||||
|
||||
for result in results:
|
||||
print(result)
|
||||
print("\n==================================\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
Loading…
Reference in New Issue