add bfloat16 chat
parent
bb9658a6ed
commit
968b4dcb4f
@ -0,0 +1,74 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||
|
||||
from typing import Tuple
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import fire
|
||||
import time
|
||||
import json
|
||||
from pathlib import Path
|
||||
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
||||
|
||||
|
||||
def load(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
) -> LLaMA:
|
||||
print("Creating model...")
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||
)
|
||||
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
model_args.vocab_size = tokenizer.n_words
|
||||
|
||||
model = Transformer(model_args)
|
||||
model.to("cpu")
|
||||
|
||||
print("Loading merged checkpoint...")
|
||||
checkpoint = torch.load(checkpoints[-1], map_location="cpu")
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
del checkpoint
|
||||
|
||||
generator = LLaMA(model, tokenizer)
|
||||
print(f"Loaded model in {time.time() - start_time:.2f} seconds")
|
||||
return generator
|
||||
|
||||
|
||||
def main(
|
||||
ckpt_dir: str = './model',
|
||||
tokenizer_path: str = './tokenizer/tokenizer.model',
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.95,
|
||||
max_seq_len: int = 256, # up to 2048
|
||||
max_batch_size: int = 32,
|
||||
):
|
||||
# torch.manual_seed(1)
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
|
||||
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
|
||||
|
||||
while True:
|
||||
prompt = input(f'prompt> ')
|
||||
if len(prompt.strip()) > 0:
|
||||
prompts = [prompt]
|
||||
results = generator.generate(
|
||||
prompts, max_gen_len=256, temperature=temperature, top_p=top_p
|
||||
)
|
||||
|
||||
for result in results:
|
||||
print(result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
Loading…
Reference in New Issue