You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
2.8 KiB
Python
99 lines
2.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
|
|
|
from typing import Tuple
|
|
import os
|
|
import sys
|
|
import torch
|
|
import fire
|
|
import time
|
|
import json
|
|
|
|
from pathlib import Path
|
|
|
|
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
|
|
|
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
|
|
|
|
|
def setup_model_parallel() -> Tuple[int, int]:
|
|
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
|
|
|
torch.distributed.init_process_group("gloo")
|
|
initialize_model_parallel(world_size)
|
|
print('Setup parallel complete!')
|
|
# torch.cuda.set_device(local_rank)
|
|
|
|
# seed must be the same in all processes
|
|
torch.manual_seed(1)
|
|
return local_rank, world_size
|
|
|
|
|
|
def load(
|
|
ckpt_dir: str,
|
|
tokenizer_path: str,
|
|
local_rank: int,
|
|
world_size: int,
|
|
max_seq_len: int,
|
|
max_batch_size: int,
|
|
) -> LLaMA:
|
|
start_time = time.time()
|
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
assert world_size == len(
|
|
checkpoints
|
|
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
|
|
ckpt_path = checkpoints[local_rank]
|
|
print("Loading")
|
|
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
|
params = json.loads(f.read())
|
|
|
|
model_args: ModelArgs = ModelArgs(
|
|
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
|
)
|
|
tokenizer = Tokenizer(model_path=tokenizer_path)
|
|
model_args.vocab_size = tokenizer.n_words
|
|
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
|
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
|
model = Transformer(model_args)
|
|
torch.set_default_tensor_type(torch.FloatTensor)
|
|
model.load_state_dict(checkpoint, strict=False)
|
|
|
|
generator = LLaMA(model, tokenizer)
|
|
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
|
return generator
|
|
|
|
|
|
def main(
|
|
ckpt_dir: str,
|
|
tokenizer_path: str,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
max_seq_len: int = 512,
|
|
max_batch_size: int = 32,
|
|
):
|
|
local_rank, world_size = setup_model_parallel()
|
|
if local_rank > 0:
|
|
sys.stdout = open(os.devnull, "w")
|
|
|
|
generator = load(
|
|
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
|
|
)
|
|
|
|
prompts = ["I believe the meaning of life is"]
|
|
# results = generator.generate(
|
|
# prompts, max_gen_len=256, temperature=temperature, top_p=top_p
|
|
# )
|
|
results = generator.generate(
|
|
prompts, max_gen_len=512, temperature=temperature, top_p=top_p
|
|
)
|
|
|
|
for result in results:
|
|
print(result)
|
|
print("\n==================================\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|