Implement matrix multiplication for 4-bit * 32-bit floats.

As of this commit, test works. But I want to optimize this a bit, seeing
if increasing load instruction : arithmetic instruction ratio will make
single-threaded performance a bit speedier.
k4bit
Mikko Juola 3 years ago
parent f6249e8d9f
commit b8946da2d8

@ -97,6 +97,7 @@ pub fn tensor_benchmarks(c: &mut Criterion) {
let orig_84096_1 = Tensor::zeros(8, 4096, TensorDType::Float32);
let orig_84096_2 = Tensor::zeros(4096, 4096, TensorDType::Float32);
let orig_84096_quant = orig_84096_1.quantize();
let mut result_84096 = Tensor::zeros(8, 4096, TensorDType::Float32);
let orig_84096_1_f16 = Tensor::zeros(8, 4096, TensorDType::Float16);
@ -111,6 +112,29 @@ pub fn tensor_benchmarks(c: &mut Criterion) {
let m1_f16 = m1.to_f16();
let m2_f16 = m2.to_f16();
let quant = m1.quantize();
c.bench_function(
"1024x128 * 1x128 matrix vector transposed multiplication, k4 quantized * f32",
|b| {
b.iter(|| {
let _ = quant.matrix_vector_mul_transposed(black_box(&m2));
})
},
);
c.bench_function(
"matrix multiplication 8x4096 @ 4096x4096 k8 quantized * f32 in-place, transposed",
|b| {
b.iter(|| {
let _ = result_84096.matrix_mul_inplace_transposed(
black_box(&orig_84096_quant),
black_box(&orig_84096_2),
);
})
},
);
c.bench_function(
"1024x128 * 1x128 matrix vector transposed multiplication, f32",
|b| {

@ -3,6 +3,7 @@
use core::arch::x86_64::*;
use half::f16;
use std::fmt::Write;
pub type I32x8 = __m256i;
pub type F32x8 = __m256;
@ -37,6 +38,11 @@ pub fn gather_f32x8(ptr: *const f32, indices: I32x8) -> F32x8 {
unsafe { _mm256_i32gather_ps(ptr, indices, 1) }
}
#[inline]
pub fn gather_scale4_f32x8(ptr: *const f32, indices: I32x8) -> F32x8 {
unsafe { _mm256_i32gather_ps(ptr, indices, 4) }
}
/* ------------------ */
/* Conversions */
/* ------------------ */
@ -51,22 +57,121 @@ pub fn f32x8_to_i16x8_as_f16(a: F32x8) -> I16x8 {
unsafe { _mm256_cvtps_ph(a, 0) }
}
#[inline]
/// Converts f32x8 to i32x8, by just casting the bits. I.e. it does not round any numbers or
/// anything, it just copies the bits.
pub fn f32x8_to_i32x8_bitcast(a: F32x8) -> I32x8 {
unsafe { _mm256_castps_si256(a) }
}
/*
* ------------------
* Accessing individual elements
*/
// Rust has no const arguments (yet, maybe in future).
// So we have this awkward match statement in each of these.
#[inline]
pub fn f32x8_get(a: F32x8, idx: usize) -> f32 {
unsafe {
let a = f32x8_to_i32x8_bitcast(a);
let a = match idx {
0 => _mm256_extract_epi32(a, 0),
1 => _mm256_extract_epi32(a, 1),
2 => _mm256_extract_epi32(a, 2),
3 => _mm256_extract_epi32(a, 3),
4 => _mm256_extract_epi32(a, 4),
5 => _mm256_extract_epi32(a, 5),
6 => _mm256_extract_epi32(a, 6),
7 => _mm256_extract_epi32(a, 7),
_ => panic!("f32x8_get: index out of bounds"),
};
// bitcast the i32 back to f32
core::mem::transmute(a)
}
}
#[inline]
pub fn i32x8_get(a: I32x8, idx: usize) -> i32 {
unsafe {
let a = match idx {
0 => _mm256_extract_epi32(a, 0),
1 => _mm256_extract_epi32(a, 1),
2 => _mm256_extract_epi32(a, 2),
3 => _mm256_extract_epi32(a, 3),
4 => _mm256_extract_epi32(a, 4),
5 => _mm256_extract_epi32(a, 5),
6 => _mm256_extract_epi32(a, 6),
7 => _mm256_extract_epi32(a, 7),
_ => panic!("i32x8_get: index out of bounds"),
};
a
}
}
#[inline]
pub fn i16x8_get(a: I16x8, idx: usize) -> i16 {
unsafe {
let a = match idx {
0 => _mm_extract_epi16(a, 0),
1 => _mm_extract_epi16(a, 1),
2 => _mm_extract_epi16(a, 2),
3 => _mm_extract_epi16(a, 3),
4 => _mm_extract_epi16(a, 4),
5 => _mm_extract_epi16(a, 5),
6 => _mm_extract_epi16(a, 6),
7 => _mm_extract_epi16(a, 7),
_ => panic!("i16x8_get: index out of bounds"),
};
a as i16
}
}
/*
* Constants, creating from constants
*/
#[inline]
pub fn f32x8_zero() -> F32x8 {
unsafe { _mm256_setzero_ps() }
}
#[inline]
pub fn i16x8_zero() -> I16x8 {
unsafe { _mm_setzero_si128() }
}
#[inline]
pub fn i16x8_singleton(value: i16) -> I16x8 {
unsafe { _mm_set1_epi16(value) }
}
#[inline]
pub fn i16x8_singleton_u16(value: u16) -> I16x8 {
unsafe { _mm_set1_epi16(value as i16) }
}
#[inline]
pub fn f32x8_singleton(value: f32) -> F32x8 {
unsafe { _mm256_set1_ps(value) }
}
#[inline]
pub fn f32x8_from_values(
val0: f32,
val1: f32,
val2: f32,
val3: f32,
val4: f32,
val5: f32,
val6: f32,
val7: f32,
) -> F32x8 {
unsafe { _mm256_set_ps(val0, val1, val2, val3, val4, val5, val6, val7) }
}
#[inline]
pub fn i32x8_from_values(
val0: i32,
val1: i32,
@ -80,6 +185,45 @@ pub fn i32x8_from_values(
unsafe { _mm256_set_epi32(val0, val1, val2, val3, val4, val5, val6, val7) }
}
#[inline]
pub fn i32x8_from_values_u32(
val0: u32,
val1: u32,
val2: u32,
val3: u32,
val4: u32,
val5: u32,
val6: u32,
val7: u32,
) -> I32x8 {
unsafe {
_mm256_set_epi32(
val0 as i32,
val1 as i32,
val2 as i32,
val3 as i32,
val4 as i32,
val5 as i32,
val6 as i32,
val7 as i32,
)
}
}
#[inline]
pub fn i16x8_from_values(
val0: i16,
val1: i16,
val2: i16,
val3: i16,
val4: i16,
val5: i16,
val6: i16,
val7: i16,
) -> I16x8 {
unsafe { _mm_set_epi16(val0, val1, val2, val3, val4, val5, val6, val7) }
}
/*
* Operations
*/
@ -87,10 +231,59 @@ pub fn i32x8_from_values(
// FMA
// a * b + c
#[inline]
pub fn fma_f32x8(a: F32x8, b: F32x8, c: F32x8) -> F32x8 {
unsafe { _mm256_fmadd_ps(a, b, c) }
}
// bitwise and
#[inline]
pub fn and_i16x8(a: I16x8, b: I16x8) -> I16x8 {
unsafe { _mm_and_si128(a, b) }
}
#[inline]
pub fn and_i32x8(a: I32x8, b: I32x8) -> I32x8 {
unsafe { _mm256_and_si256(a, b) }
}
#[inline]
pub fn and_f32x8(a: F32x8, b: I32x8) -> F32x8 {
unsafe { std::mem::transmute(_mm256_and_si256(std::mem::transmute(a), b)) }
}
// shift right by 4 bits exactly, for each individual i16 value.
// extends by zeros from left.
#[inline]
pub fn shift_right_by_4_i16x8(a: I16x8) -> I16x8 {
unsafe { _mm_srli_epi16(a, 4) }
}
// shift right by half of an entire i16x8
// extends by zeros from left.
#[inline]
pub fn shift_right_by_64_i128(a: I16x8) -> I16x8 {
unsafe { _mm_srli_si128(a, 64 / 8) }
}
// Shuffle/premute
pub fn shuffle_i16x8(a: I16x8, permutation: I16x8) -> I16x8 {
unsafe { _mm_shuffle_epi8(a, permutation) }
}
// Extends 8 i8 values into 7 i16 values
//
// XXYYZZ -> 00XX00YY00ZZ
pub fn extend_i8_to_i16_i16x8(a: I16x8) -> I16x8 {
unsafe { _mm_cvtepi8_epi16(a) }
}
// Extends 8 i8 values into 4 i32 values
pub fn extend_i8_to_i32_i32x8(a: I16x8) -> I32x8 {
let i = extend_i8_to_i16_i16x8(a);
unsafe { _mm256_cvtepu16_epi32(i) }
}
// Horizontal sums
#[inline]
@ -114,3 +307,48 @@ pub fn horizontal_sum_and_f32_to_f16(mut ymm: __m256) -> f16 {
f16::from_f32(_mm256_cvtss_f32(ymm))
}
}
/*
* Debugging
*/
/// Prints a binary representation of i16x8 to stdout in this form:
///
/// 0 0 0 0
/// 0x0000 0x0000 0x0000 0x0000
/// 0000000000000000 0000000000000000 0000000000000000 0000000000000000 etc.
///
/// decimal on first line, hex on second, binary on third.
pub fn print_i16x8(a: I16x8) {
let mut decimal_line = String::new();
let mut hex_line = String::new();
let mut binary_line = String::new();
for i in 0..8 {
let val = i16x8_get(a, i);
write!(decimal_line, "{:>5} ", val).unwrap();
write!(hex_line, "0x{:04X} ", val).unwrap();
write!(binary_line, "{:016b} ", val).unwrap();
}
println!("{}", decimal_line.trim_end());
println!("{}", hex_line.trim_end());
println!("{}", binary_line.trim_end());
}
pub fn print_i32x8(a: I32x8) {
let mut decimal_line = String::new();
let mut hex_line = String::new();
let mut binary_line = String::new();
for i in 0..8 {
let val = i32x8_get(a, i);
write!(decimal_line, "{:>10} ", val).unwrap();
write!(hex_line, "0x{:08X} ", val).unwrap();
write!(binary_line, "{:032b} ", val).unwrap();
}
println!("{}", decimal_line.trim_end());
println!("{}", hex_line.trim_end());
println!("{}", binary_line.trim_end());
}

@ -0,0 +1,116 @@
// This file contains platform-specific SIMD so that rest of rllama does not need to care which
// platform it is on.
use core::arch::aarch64::*;
use half::f16;
pub type I32x8 = int32x4x2_t;
pub type F32x8 = float32x4x2_t;
pub type I16x8 = int16x8_t;
/* ------------------ */
/* Loading and storing things */
/* ------------------ */
#[inline]
pub fn load_i16x8(ptr: *const I16x8) -> I16x8 {
unsafe { vld1q_s16(ptr) }
}
#[inline]
pub fn store_i16x8(ptr: *mut I16x8, a: I16x8) {
unsafe { vst1q_s16(ptr, a) }
}
#[inline]
pub fn load_f32x8(ptr: *const F32x8) -> F32x8 {
unsafe { vld1q_f32_x2(ptr as *const f32) }
}
#[inline]
pub fn store_f32x8(ptr: *mut F32x8, a: F32x8) {
unsafe { vst1q_f32_x2(ptr as *mut f32, a) }
}
#[inline]
pub fn gather_f32x8(ptr: *const f32, indices: I32x8) -> F32x8 {
unsafe { _mm256_i32gather_ps(ptr, indices, 1) }
}
/* ------------------ */
/* Conversions */
/* ------------------ */
#[inline]
pub fn i16x8_as_f16_to_f32x8(a: I16x8) -> F32x8 {
unsafe { _mm256_cvtph_ps(a) }
}
#[inline]
pub fn f32x8_to_i16x8_as_f16(a: F32x8) -> I16x8 {
unsafe { _mm256_cvtps_ph(a, 0) }
}
/*
* Constants, creating from constants
*/
pub fn f32x8_zero() -> F32x8 {
unsafe { _mm256_setzero_ps() }
}
pub fn i16x8_zero() -> I16x8 {
unsafe { _mm_setzero_si128() }
}
pub fn f32x8_singleton(value: f32) -> F32x8 {
unsafe { _mm256_set1_ps(value) }
}
pub fn i32x8_from_values(
val0: i32,
val1: i32,
val2: i32,
val3: i32,
val4: i32,
val5: i32,
val6: i32,
val7: i32,
) -> I32x8 {
unsafe { _mm256_set_epi32(val0, val1, val2, val3, val4, val5, val6, val7) }
}
/*
* Operations
*/
// FMA
// a * b + c
pub fn fma_f32x8(a: F32x8, b: F32x8, c: F32x8) -> F32x8 {
unsafe { _mm256_fmadd_ps(a, b, c) }
}
// Horizontal sums
#[inline]
pub fn horizontal_sum_f32x8(mut ymm: __m256) -> f32 {
unsafe {
let ymm2 = _mm256_permute2f128_ps(ymm, ymm, 1);
ymm = _mm256_add_ps(ymm, ymm2);
ymm = _mm256_hadd_ps(ymm, ymm);
ymm = _mm256_hadd_ps(ymm, ymm);
_mm256_cvtss_f32(ymm)
}
}
#[inline]
pub fn horizontal_sum_and_f32_to_f16(mut ymm: __m256) -> f16 {
unsafe {
let ymm2 = _mm256_permute2f128_ps(ymm, ymm, 1);
ymm = _mm256_add_ps(ymm, ymm2);
ymm = _mm256_hadd_ps(ymm, ymm);
ymm = _mm256_hadd_ps(ymm, ymm);
f16::from_f32(_mm256_cvtss_f32(ymm))
}
}

@ -0,0 +1,116 @@
// This file contains platform-specific SIMD so that rest of rllama does not need to care which
// platform it is on.
use core::arch::x86_64::*;
use half::f16;
pub type I32x8 = __m256i;
pub type F32x8 = __m256;
pub type I16x8 = __m128i;
/* ------------------ */
/* Loading and storing things */
/* ------------------ */
#[inline]
pub fn load_i16x8(ptr: *const I16x8) -> I16x8 {
unsafe { _mm_loadu_si128(ptr) }
}
#[inline]
pub fn store_i16x8(ptr: *mut I16x8, a: I16x8) {
unsafe { _mm_storeu_si128(ptr, a) }
}
#[inline]
pub fn load_f32x8(ptr: *const F32x8) -> F32x8 {
unsafe { _mm256_loadu_ps(ptr as *const f32) }
}
#[inline]
pub fn store_f32x8(ptr: *mut F32x8, a: F32x8) {
unsafe { _mm256_storeu_ps(ptr as *mut f32, a) }
}
#[inline]
pub fn gather_f32x8(ptr: *const f32, indices: I32x8) -> F32x8 {
unsafe { _mm256_i32gather_ps(ptr, indices, 1) }
}
/* ------------------ */
/* Conversions */
/* ------------------ */
#[inline]
pub fn i16x8_as_f16_to_f32x8(a: I16x8) -> F32x8 {
unsafe { _mm256_cvtph_ps(a) }
}
#[inline]
pub fn f32x8_to_i16x8_as_f16(a: F32x8) -> I16x8 {
unsafe { _mm256_cvtps_ph(a, 0) }
}
/*
* Constants, creating from constants
*/
pub fn f32x8_zero() -> F32x8 {
unsafe { _mm256_setzero_ps() }
}
pub fn i16x8_zero() -> I16x8 {
unsafe { _mm_setzero_si128() }
}
pub fn f32x8_singleton(value: f32) -> F32x8 {
unsafe { _mm256_set1_ps(value) }
}
pub fn i32x8_from_values(
val0: i32,
val1: i32,
val2: i32,
val3: i32,
val4: i32,
val5: i32,
val6: i32,
val7: i32,
) -> I32x8 {
unsafe { _mm256_set_epi32(val0, val1, val2, val3, val4, val5, val6, val7) }
}
/*
* Operations
*/
// FMA
// a * b + c
pub fn fma_f32x8(a: F32x8, b: F32x8, c: F32x8) -> F32x8 {
unsafe { _mm256_fmadd_ps(a, b, c) }
}
// Horizontal sums
#[inline]
pub fn horizontal_sum_f32x8(mut ymm: __m256) -> f32 {
unsafe {
let ymm2 = _mm256_permute2f128_ps(ymm, ymm, 1);
ymm = _mm256_add_ps(ymm, ymm2);
ymm = _mm256_hadd_ps(ymm, ymm);
ymm = _mm256_hadd_ps(ymm, ymm);
_mm256_cvtss_f32(ymm)
}
}
#[inline]
pub fn horizontal_sum_and_f32_to_f16(mut ymm: __m256) -> f16 {
unsafe {
let ymm2 = _mm256_permute2f128_ps(ymm, ymm, 1);
ymm = _mm256_add_ps(ymm, ymm2);
ymm = _mm256_hadd_ps(ymm, ymm);
ymm = _mm256_hadd_ps(ymm, ymm);
f16::from_f32(_mm256_cvtss_f32(ymm))
}
}

@ -187,6 +187,12 @@ impl WrappedPtr {
}
}
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
enum BitSide {
Upper,
Lower,
}
fn compute_capacity_cols(dtype: TensorDType, cols: i64) -> i64 {
match dtype {
TensorDType::K4BitQuantization => compute_capacity_cols_k4(cols),
@ -311,7 +317,24 @@ impl Tensor {
let idx = row * self.capacity_cols + col;
match self.dtype {
TensorDType::K4BitQuantization => unimplemented!(),
TensorDType::K4BitQuantization => {
assert!(!self.q4_data.is_null());
let (addr, side) = self.q4_address(row, col);
let addr_val: u8 = unsafe { *(addr as *const u8) };
let quant_val: u8 = unsafe {
match side {
BitSide::Upper => (addr_val >> 4),
BitSide::Lower => (addr_val & 0x0F),
}
};
let table: I16x8 = if quant_val <= 7 {
unsafe { load_i16x8(self.q4_data.add(row as usize * 32) as *const I16x8) }
} else {
unsafe { load_i16x8(self.q4_data.add(row as usize * 32 + 16) as *const I16x8) }
};
let table = i16x8_as_f16_to_f32x8(table);
f32x8_get(table, (quant_val % 8) as usize)
}
TensorDType::Float16 => {
let val: f16 = unsafe { *(self.data.add(idx as usize * 2) as *const f16) };
val.to_f32()
@ -390,6 +413,22 @@ impl Tensor {
panic!("Failed to allocate tensor");
}
TENSORS_BYTES_ALLOCATED.fetch_add(layout.size(), std::sync::atomic::Ordering::Relaxed);
let result = Self {
data,
q4_data: std::ptr::null_mut(),
#[cfg(feature = "opencl")]
opencl_data: Arc::new(RwLock::new(None)),
#[cfg(feature = "opencl")]
waiting_for_data: None,
dtype,
rows,
cols,
capacity_cols,
layout,
q4_layout: Layout::from_size_align(1, 1).unwrap(),
};
// Even though we are uninitialized, we should zero out the extra space between the
// columns.
// Otherwise there might be problems later as other operations assume it is zeroed.
@ -397,7 +436,13 @@ impl Tensor {
for row in 0..rows {
let idx = row * capacity_cols + extra_col;
match dtype {
TensorDType::K4BitQuantization => unimplemented!(),
TensorDType::K4BitQuantization => {
// We traverse each byte twice in this particular loop but eh who cares
let (addr, _side) = result.q4_address(row, extra_col);
unsafe {
*addr = 0;
}
}
TensorDType::Float16 => {
let val: f16 = f16::from_f32(0.0);
unsafe { *(data.add(idx as usize * 2) as *mut f16) = val };
@ -409,20 +454,7 @@ impl Tensor {
}
}
Self {
data,
q4_data: std::ptr::null_mut(),
#[cfg(feature = "opencl")]
opencl_data: Arc::new(RwLock::new(None)),
#[cfg(feature = "opencl")]
waiting_for_data: None,
dtype,
rows,
cols,
capacity_cols,
layout,
q4_layout: Layout::from_size_align(1, 1).unwrap(),
}
result
}
pub fn full(rows: i64, cols: i64, dtype: TensorDType, value: f32) -> Self {
@ -896,7 +928,13 @@ impl Tensor {
if other.rows == 1 && self.is_on_cpu() {
return self.matrix_vector_mul_transposed(other);
}
let mut result = unsafe { Tensor::uninitialized(self.rows, other.rows, self.dtype) };
// k4bit * float32 = float32 (not k4bit)
let result_dtype = if self.dtype != TensorDType::K4BitQuantization {
self.dtype
} else {
TensorDType::Float32
};
let mut result = unsafe { Tensor::uninitialized(self.rows, other.rows, result_dtype) };
#[cfg(feature = "opencl")]
if self.is_on_gpu() {
let od = self.opencl_data.write().unwrap();
@ -1109,6 +1147,10 @@ impl Tensor {
}
}
pub fn quantize(&self) -> Tensor {
crate::weight_compression::quantize(self)
}
#[cfg(feature = "opencl")]
fn matrix_mul_inplace_transposed_gpu(&mut self, src: &Tensor, other: &Tensor) {
let mut self_od = self.opencl_data.write().unwrap();
@ -1128,6 +1170,202 @@ impl Tensor {
std::mem::drop(other_od);
}
fn matrix_mul_inplace_transposed_k4bit_and_f32(&mut self, src: &Tensor, other: &Tensor) {
// Assume: size checks have been done already.
assert!(src.dtype == TensorDType::K4BitQuantization);
assert!(other.dtype == TensorDType::Float32);
assert!(self.dtype == TensorDType::Float32);
unsafe {
let src_rows: usize = src.rows as usize;
let src_cols: usize = src.cols as usize;
let src_cols_capacity: usize = src.capacity_cols as usize;
let other_cols: usize = other.cols as usize;
let other_rows: usize = other.rows as usize;
let other_cols_capacity: usize = other.capacity_cols as usize;
let self_rows: usize = self.rows as usize;
let self_cols: usize = self.cols as usize;
let self_cols_capacity: usize = self.capacity_cols as usize;
let src_data: *const u8 = src.data;
let other_data: *const f32 = other.data as *const f32;
let tgt_data: *mut f32 = self.data as *mut f32;
// src_cols_its == also the shared dimension between src and other.
let src_cols_its = if src_cols % 32 == 0 {
src_cols / 32
} else {
src_cols / 32 + 1
};
debug_assert!(!src.q4_data.is_null());
for row in 0..self_rows {
let quant0 = load_i16x8(src.q4_data.add(row * 32) as *const I16x8);
let quant1 = load_i16x8(src.q4_data.add(row * 32 + 16) as *const I16x8);
let quants: [F32x8; 2] =
[i16x8_as_f16_to_f32x8(quant0), i16x8_as_f16_to_f32x8(quant1)];
for col in 0..self_cols {
#[inline]
fn load_f32(
other: *const f32,
row: usize,
col: usize,
ncols: usize,
nrows: usize,
cols_capacity: usize,
) -> F32x8 {
unsafe {
if row >= nrows || col >= ncols {
f32x8_zero()
} else {
load_f32x8(other.add(row * cols_capacity + col) as *const F32x8)
}
}
}
#[inline]
fn load_k4_to_f32(
tensor: &Tensor,
row: usize,
col: usize,
nrows: usize,
quants: *const F32x8,
) -> (F32x8, F32x8, F32x8, F32x8) {
unsafe {
let M: u32 = 0xFFFFFFFF;
let MASKS: [I32x8; 8] = [
i32x8_from_values_u32(M, M, M, M, M, M, M, M),
i32x8_from_values_u32(0, M, M, M, M, M, M, M),
i32x8_from_values_u32(0, 0, M, M, M, M, M, M),
i32x8_from_values_u32(0, 0, 0, M, M, M, M, M),
i32x8_from_values_u32(0, 0, 0, 0, M, M, M, M),
i32x8_from_values_u32(0, 0, 0, 0, 0, M, M, M),
i32x8_from_values_u32(0, 0, 0, 0, 0, 0, M, M),
i32x8_from_values_u32(0, 0, 0, 0, 0, 0, 0, M),
];
let NOMASK: I32x8 = i32x8_from_values_u32(M, M, M, M, M, M, M, M);
let FULLMASK: I32x8 = i32x8_from_values_u32(0, 0, 0, 0, 0, 0, 0, 0);
if row < nrows {
let col = col as i64;
let ncols = tensor.cols;
let (addr, side) = tensor.q4_address(row as i64, col);
let i = load_i16x8(addr as *const I16x8);
let even_mask = i16x8_singleton_u16(0x0F0F);
let odd_mask = i16x8_singleton_u16(0xF0F0);
let evens = and_i16x8(i, even_mask);
let odds = and_i16x8(i, odd_mask);
let odds = shift_right_by_4_i16x8(odds);
let indices1 = extend_i8_to_i32_i32x8(odds);
let odds_shifted = shift_right_by_64_i128(odds);
let indices2 = extend_i8_to_i32_i32x8(odds_shifted);
let indices3 = extend_i8_to_i32_i32x8(evens);
let indices4 =
extend_i8_to_i32_i32x8(shift_right_by_64_i128(evens));
let unquantized1: F32x8 =
gather_scale4_f32x8(quants as *const f32, indices1);
let unquantized2: F32x8 =
gather_scale4_f32x8(quants as *const f32, indices2);
let unquantized3: F32x8 =
gather_scale4_f32x8(quants as *const f32, indices3);
let unquantized4: F32x8 =
gather_scale4_f32x8(quants as *const f32, indices4);
let quan1_mask: I32x8 = if col <= ncols - 8 {
NOMASK
} else if col < ncols {
MASKS[(col % 8) as usize]
} else {
FULLMASK
};
let quan2_mask: I32x8 = if col <= ncols - 16 {
NOMASK
} else if col < ncols - 8 {
MASKS[(col % 8) as usize]
} else {
FULLMASK
};
let quan3_mask: I32x8 = if col <= ncols - 24 {
NOMASK
} else if col < ncols - 16 {
MASKS[(col % 8) as usize]
} else {
FULLMASK
};
let quan4_mask: I32x8 = if col <= ncols - 32 {
NOMASK
} else if col < ncols - 24 {
MASKS[(col % 8) as usize]
} else {
FULLMASK
};
let unquantized1 = and_f32x8(unquantized1, quan1_mask);
let unquantized2 = and_f32x8(unquantized2, quan2_mask);
let unquantized3 = and_f32x8(unquantized3, quan3_mask);
let unquantized4 = and_f32x8(unquantized4, quan4_mask);
(unquantized1, unquantized2, unquantized3, unquantized4)
} else {
(f32x8_zero(), f32x8_zero(), f32x8_zero(), f32x8_zero())
}
}
}
let mut targets8: [F32x8; 4] =
[f32x8_zero(), f32x8_zero(), f32x8_zero(), f32x8_zero()];
for p in 0..src_cols_its {
let other8_0: F32x8 = load_f32(
other_data,
col,
p * 32,
other_cols,
other_rows,
other_cols_capacity,
);
let other8_1: F32x8 = load_f32(
other_data,
col,
p * 32 + 8,
other_cols,
other_rows,
other_cols_capacity,
);
let other8_2: F32x8 = load_f32(
other_data,
col,
p * 32 + 16,
other_cols,
other_rows,
other_cols_capacity,
);
let other8_3: F32x8 = load_f32(
other_data,
col,
p * 32 + 24,
other_cols,
other_rows,
other_cols_capacity,
);
let (src8_0, src8_1, src8_2, src8_3): (F32x8, F32x8, F32x8, F32x8) =
load_k4_to_f32(&src, row, p * 32, src_rows, quants.as_ptr());
targets8[0] = fma_f32x8(src8_0, other8_0, targets8[0]);
targets8[1] = fma_f32x8(src8_1, other8_1, targets8[1]);
targets8[2] = fma_f32x8(src8_2, other8_2, targets8[2]);
targets8[3] = fma_f32x8(src8_3, other8_3, targets8[3]);
}
let target0 = horizontal_sum_f32x8(targets8[0]);
let target1 = horizontal_sum_f32x8(targets8[1]);
let target2 = horizontal_sum_f32x8(targets8[2]);
let target3 = horizontal_sum_f32x8(targets8[3]);
let target = target0 + target1 + target2 + target3;
*tgt_data.add(row * self_cols_capacity + col) = target;
}
}
}
}
/// Matrix multiplication done in-place, but the second matrix is transposed.
/// With this, you can avoid using .transpose() on the second matrix.
pub fn matrix_mul_inplace_transposed(&mut self, src: &Tensor, other: &Tensor) {
@ -1147,7 +1385,9 @@ impl Tensor {
self.rows, self.cols, other.rows, other.cols
);
}
if src.dtype != other.dtype {
if src.dtype != other.dtype
&& (src.dtype != TensorDType::K4BitQuantization || other.dtype != TensorDType::Float32)
{
panic!("Invalid matrix multiplication, different dtypes");
}
if self.rows != src.rows {
@ -1157,6 +1397,10 @@ impl Tensor {
panic!("Invalid matrix multiplication, different number of cols");
}
if src.dtype == TensorDType::K4BitQuantization && other.dtype == TensorDType::Float32 {
return self.matrix_mul_inplace_transposed_k4bit_and_f32(src, other);
}
match src.dtype {
TensorDType::K4BitQuantization => unimplemented!(),
TensorDType::Float32 => {
@ -1883,6 +2127,152 @@ impl Tensor {
result
}
/// Creates a tensor with TensorDType::K4BitQuantization, using two functions to initialize the
/// values and quantization lookup table.
///
/// The first function must always return numbers from 0 to 15. These are put in the matrix.
/// The second function must return, for each row, 16 floats that correspond the numbers
/// returns from the first function. For this quantization scheme, each row has its own set of
/// floats.
#[inline]
pub fn make_k4bit_from_fn<F, F2>(
rows: i64,
cols: i64,
mut get_value: F,
mut get_lookup_table: F2,
) -> Self
where
F: FnMut(i64, i64) -> u8,
F2: FnMut(i64) -> [f32; 16],
{
let mut result =
unsafe { Tensor::uninitialized(rows, cols, TensorDType::K4BitQuantization) };
result.allocate_q4_data();
assert!(!result.q4_data.is_null());
unsafe {
for row in 0..rows {
// Set the lookup table to
let lookup_table = get_lookup_table(row);
/*
let table1 = f32x8_from_values(
lookup_table[0],
lookup_table[1],
lookup_table[2],
lookup_table[3],
lookup_table[4],
lookup_table[5],
lookup_table[6],
lookup_table[7],
);
let table2 = f32x8_from_values(
lookup_table[8],
lookup_table[9],
lookup_table[10],
lookup_table[11],
lookup_table[12],
lookup_table[13],
lookup_table[14],
lookup_table[15],
);
*/
let table1 = f32x8_from_values(
lookup_table[7],
lookup_table[6],
lookup_table[5],
lookup_table[4],
lookup_table[3],
lookup_table[2],
lookup_table[1],
lookup_table[0],
);
let table2 = f32x8_from_values(
lookup_table[15],
lookup_table[14],
lookup_table[13],
lookup_table[12],
lookup_table[11],
lookup_table[10],
lookup_table[9],
lookup_table[8],
);
let table1 = f32x8_to_i16x8_as_f16(table1);
let table2 = f32x8_to_i16x8_as_f16(table2);
store_i16x8(result.q4_data.add(row as usize * 32) as *mut I16x8, table1);
store_i16x8(
result.q4_data.add(row as usize * 32 + 16) as *mut I16x8,
table2,
);
for col in 0..cols {
let v = get_value(row, col);
let (addr, side) = result.q4_address(row, col);
let mut addr_value = *addr;
match side {
BitSide::Upper => {
addr_value = (addr_value & 0x0F) | (v << 4);
}
BitSide::Lower => {
addr_value = (addr_value & 0xF0) | v;
}
}
*addr = addr_value;
}
}
}
result
}
/// K4 bit quantization does not store the values in successive bits, but rather interleaved.
///
/// byte
/// <--->
/// 00 88 11 99 22 AA 33 BB 44 CC 55 DD 66 EE 77 FF
/// (4 bits each, i.e. nibbles)
/// (actually goes up to 32 but I ran out of space)
///
/// Upper 4 bits are used if: col % 32 < 16
/// Lower 4 bits are used if: col % 32 >= 16
///
/// The reason it works like this is to make matrix multiplication SIMD code a bit simpler. The
/// instructions don't like 4-bit pieces.
#[inline]
fn q4_address(&self, row: i64, col: i64) -> (*mut u8, BitSide) {
let row = row as usize;
let col = col as usize;
let col_base = ((col / 32) * 32);
let mut offset = (row * self.capacity_cols as usize + col_base as usize) / 2;
unsafe {
if col % 32 < 16 {
offset += col % 16;
(self.data.add(offset), BitSide::Upper)
} else {
offset += col % 16;
(self.data.add(offset), BitSide::Lower)
}
}
}
fn allocate_q4_data(&mut self) {
if self.dtype != TensorDType::K4BitQuantization {
panic!("Can only allocate q4 data for K4BitQuantization");
}
// Already allocated? back off
if !self.q4_data.is_null() {
return;
}
let layout = Layout::from_size_align(self.rows as usize * 32, 32).unwrap();
let q4_data = unsafe { std::alloc::alloc_zeroed(layout) };
if q4_data.is_null() {
panic!("Failed to allocate q4 data");
}
self.q4_data = q4_data;
self.q4_layout = layout;
}
pub fn zeros(rows: i64, cols: i64, dtype: TensorDType) -> Self {
if rows == 0 || cols == 0 {
let mut tensor = Self::empty();
@ -3031,4 +3421,112 @@ mod tests {
}
}
}
#[test]
fn tiny_quantized_16x16_matrix_equals_regular_16x16_matrix() {
for _ in 0..100 {
let reference = Tensor::random(16, 16, TensorDType::Float32);
let quantized = Tensor::make_k4bit_from_fn(
16,
16,
|_row, col| col as u8,
|row| {
let mut result: [f32; 16] = [0.0; 16];
for col in 0..16 {
result[col] = reference.get_f32(row, col as i64);
}
result
},
);
assert_eq!(reference.rows(), quantized.rows());
assert_eq!(reference.cols(), quantized.cols());
for row in 0..reference.rows {
for col in 0..reference.cols {
// The quantized table always uses f16 so values may not be 100% equal.
assert_relative_eq!(
reference.get_f32(row, col),
quantized.get_f32(row, col),
epsilon = 1e-3,
);
}
}
}
}
#[test]
fn quantized_matrices_matrix_mul_transposed_correctly() {
let mut rng = rand::thread_rng();
for _ in 0..100 {
let a = rng.gen_range(1..=128);
let b = rng.gen_range(1..=128);
let mut reference = Tensor::zeros(a, b, TensorDType::Float32);
let other_matrix = Tensor::random(128, b, TensorDType::Float32);
let mut quant_values: Vec<Vec<f32>> = Vec::with_capacity(a as usize);
for row in 0..a {
let mut quant_values_for_row: Vec<f32> = Vec::with_capacity(16);
for _ in 0..16 {
quant_values_for_row.push(rng.gen_range(0.0..=1.0));
}
quant_values.push(quant_values_for_row);
}
let mut quantized_values: Vec<Vec<u8>> = Vec::with_capacity(a as usize);
for row in 0..a {
let mut quant_values_for_row: Vec<u8> = Vec::with_capacity(b as usize);
for col in 0..b {
let i = rng.gen_range(0..=15);
reference.set_f32(row, col, quant_values[row as usize][i as usize]);
quant_values_for_row.push(i as u8);
}
quantized_values.push(quant_values_for_row);
}
let quantized = Tensor::make_k4bit_from_fn(
a,
b,
|row, col| quantized_values[row as usize][col as usize],
|row| {
let mut result: [f32; 16] = [0.0; 16];
for col in 0..16 {
result[col] = quant_values[row as usize][col];
}
result
},
);
assert_eq!(reference.rows(), quantized.rows());
assert_eq!(reference.cols(), quantized.cols());
for row in 0..reference.rows {
for col in 0..reference.cols {
// The quantized table always uses f16 so values may not be 100% equal.
assert_relative_eq!(
reference.get_f32(row, col),
quantized.get_f32(row, col),
epsilon = 1e-1,
);
}
}
let mult1 = reference.matrix_mul_transposed(&other_matrix);
let mult2 = quantized.matrix_mul_transposed(&other_matrix);
assert_eq!(mult1.rows(), mult2.rows());
assert_eq!(mult1.cols(), mult2.cols());
for row in 0..mult1.rows {
for col in 0..mult1.cols {
assert_relative_eq!(
mult1.get_f32(row, col),
mult2.get_f32(row, col),
epsilon = 1e-1,
);
}
}
}
}
}

@ -457,6 +457,9 @@ impl FeedForward {
FromPiecesDirection::Rows,
)?;
w1 = crate::weight_compression::quantize(&w1);
panic!("stop");
if data_settings.force_f16 {
w1 = w1.to_f16();
w2 = w2.to_f16();

@ -12,9 +12,6 @@ pub fn quantize(tensor: &Tensor) -> Tensor {
let mut result = Tensor::zeros(tensor.rows(), tensor.cols(), tensor.dtype());
for row in 0..tensor.rows() {
let mut values: Vec<f32> = Vec::with_capacity(tensor.cols() as usize);
if row % 500 == 0 {
println!("{}", row,);
}
values.truncate(0);
let mut mi: f32 = std::f32::MAX;
let mut ma: f32 = std::f32::MIN;

Loading…
Cancel
Save