Update README.md

main
Christopher Williams 3 years ago
parent c51ada0c19
commit 38bea2a783

@ -1,23 +1,9 @@
# Stable Diffusion # Stable Diffusion CPU only
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/> This fork of Stable-Diffusion doesn't require a high end graphics card and runs exclusively on your cpu. It's been tested on Linux Mint 22.04 and Windows 10.
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*, This isn't the fastest experience you'll have with stable diffusion but it does allow you to use stable-diffusion and most of the current set of features floating around on the internet such as txt2img, img2img, image upscaling with Real-ESRGAN and better faces with GFPGAN.
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
_[CVPR '22 Oral](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html) |
[GitHub](https://github.com/CompVis/latent-diffusion) | [arXiv](https://arxiv.org/abs/2112.10752) | [Project page](https://ommer-lab.com/research/latent-diffusion-models/)_
![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
model.
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
## ##
@ -78,7 +64,28 @@ bash -i run_sdco.sh
``` ```
# Stable Diffusion
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
_[CVPR '22 Oral](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html) |
[GitHub](https://github.com/CompVis/latent-diffusion) | [arXiv](https://arxiv.org/abs/2112.10752) | [Project page](https://ommer-lab.com/research/latent-diffusion-models/)_
![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
model.
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
##

Loading…
Cancel
Save