|
|
|
@ -16,12 +16,31 @@ from ldm.util import instantiate_from_config
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
|
|
|
|
|
|
from transformers import AutoFeatureExtractor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# load safety model
|
|
|
|
|
|
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
|
|
|
|
|
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
|
|
|
|
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
|
|
|
|
|
|
|
|
|
|
|
def chunk(it, size):
|
|
|
|
def chunk(it, size):
|
|
|
|
it = iter(it)
|
|
|
|
it = iter(it)
|
|
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def numpy_to_pil(images):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Convert a numpy image or a batch of images to a PIL image.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
if images.ndim == 3:
|
|
|
|
|
|
|
|
images = images[None, ...]
|
|
|
|
|
|
|
|
images = (images * 255).round().astype("uint8")
|
|
|
|
|
|
|
|
pil_images = [Image.fromarray(image) for image in images]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return pil_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
@ -247,16 +266,23 @@ def main():
|
|
|
|
|
|
|
|
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
|
|
|
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_image = x_samples_ddim
|
|
|
|
|
|
|
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
|
|
|
|
|
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
if not opt.skip_save:
|
|
|
|
if not opt.skip_save:
|
|
|
|
for x_sample in x_samples_ddim:
|
|
|
|
for x_sample in x_checked_image_torch:
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
|
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
|
|
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
|
|
|
os.path.join(sample_path, f"{base_count:05}.png"))
|
|
|
|
os.path.join(sample_path, f"{base_count:05}.png"))
|
|
|
|
base_count += 1
|
|
|
|
base_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
if not opt.skip_grid:
|
|
|
|
if not opt.skip_grid:
|
|
|
|
all_samples.append(x_samples_ddim)
|
|
|
|
all_samples.append(x_checked_image_torch)
|
|
|
|
|
|
|
|
|
|
|
|
if not opt.skip_grid:
|
|
|
|
if not opt.skip_grid:
|
|
|
|
# additionally, save as grid
|
|
|
|
# additionally, save as grid
|
|
|
|
|