|
|
|
|
@ -16,12 +16,29 @@ from ldm.util import instantiate_from_config
|
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
|
|
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
|
|
|
from transformers import AutoFeatureExtractor
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
|
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
|
|
|
|
|
|
|
|
|
def chunk(it, size):
|
|
|
|
|
it = iter(it)
|
|
|
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def numpy_to_pil(images):
|
|
|
|
|
"""
|
|
|
|
|
Convert a numpy image or a batch of images to a PIL image.
|
|
|
|
|
"""
|
|
|
|
|
if images.ndim == 3:
|
|
|
|
|
images = images[None, ...]
|
|
|
|
|
images = (images * 255).round().astype("uint8")
|
|
|
|
|
pil_images = [Image.fromarray(image) for image in images]
|
|
|
|
|
|
|
|
|
|
return pil_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
|
@ -220,7 +237,9 @@ def main():
|
|
|
|
|
if opt.fixed_code:
|
|
|
|
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
|
|
|
|
|
|
|
|
|
print("start code", start_code.abs().sum())
|
|
|
|
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
|
|
|
|
precision_scope = nullcontext
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
with precision_scope("cuda"):
|
|
|
|
|
with model.ema_scope():
|
|
|
|
|
@ -269,7 +288,11 @@ def main():
|
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
|
|
toc = time.time()
|
|
|
|
|
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
# run safety checker
|
|
|
|
|
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
|
|
|
|
|
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
|
f" \nEnjoy.")
|
|
|
|
|
|