|
|
|
|
@ -239,9 +239,7 @@ def main():
|
|
|
|
|
if opt.fixed_code:
|
|
|
|
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
|
|
|
|
|
|
|
|
|
print("start code", start_code.abs().sum())
|
|
|
|
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
|
|
|
|
precision_scope = nullcontext
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
with precision_scope("cuda"):
|
|
|
|
|
with model.ema_scope():
|
|
|
|
|
@ -297,6 +295,13 @@ def main():
|
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
|
|
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
# run safety checker
|
|
|
|
|
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
|
|
|
|
|
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
toc = time.time()
|
|
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
|
f" \nEnjoy.")
|
|
|
|
|
|
|
|
|
|
|