|
|
|
@ -3,8 +3,8 @@
|
|
|
|
########################################################################################################
|
|
|
|
########################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print("\n!!! NOTE: THIS IS STILL WIP (and a bit slower than RWKV-4) !!!\n")
|
|
|
|
print("\n!!! NOTE: THIS IS STILL WIP !!!\n")
|
|
|
|
import os, warnings, math, datetime
|
|
|
|
import os, warnings, math, datetime, sys
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
|
@ -16,31 +16,60 @@ if __name__ == "__main__":
|
|
|
|
from pytorch_lightning.callbacks import TQDMProgressBar
|
|
|
|
from pytorch_lightning.callbacks import TQDMProgressBar
|
|
|
|
from pytorch_lightning import Callback
|
|
|
|
from pytorch_lightning import Callback
|
|
|
|
|
|
|
|
|
|
|
|
seed_everything(42)
|
|
|
|
# print("WARNING: THIS IS ONLY FOR DEBUG")
|
|
|
|
|
|
|
|
# seed_everything(42)
|
|
|
|
|
|
|
|
|
|
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*")
|
|
|
|
warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*")
|
|
|
|
warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*")
|
|
|
|
warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*")
|
|
|
|
|
|
|
|
|
|
|
|
########################################################################################################
|
|
|
|
########################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# example: train a simple L6-D512 RWKV from scratch
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# python train.py --load_model "" --wandb "" --proj_dir "out" \
|
|
|
|
|
|
|
|
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
|
|
|
|
|
|
|
|
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
|
|
|
|
|
|
|
|
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
|
|
|
|
|
|
|
|
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
|
|
|
|
|
|
|
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# example: fine-tune RWKV 1.5B using 8xA100 40G
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
|
|
|
|
|
|
|
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
|
|
|
|
|
|
|
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
|
|
|
|
|
|
|
|
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
|
|
|
|
|
|
|
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
|
|
|
|
|
|
|
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
|
|
|
|
|
|
|
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
|
|
|
|
|
|
|
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
|
|
|
|
|
|
|
|
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
|
|
|
|
|
|
|
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
|
|
|
|
|
|
|
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
|
|
|
|
|
|
|
|
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser = Trainer.add_argparse_args(parser)
|
|
|
|
parser = Trainer.add_argparse_args(parser)
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--load_model", default="", type=str)
|
|
|
|
parser.add_argument("--load_model", default="", type=str)
|
|
|
|
parser.add_argument("--wandb", default="", type=str)
|
|
|
|
parser.add_argument("--wandb", default="", type=str) # wandb project name
|
|
|
|
parser.add_argument("--proj_dir", default="out", type=str)
|
|
|
|
parser.add_argument("--proj_dir", default="out", type=str)
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--data_file", default="", type=str)
|
|
|
|
parser.add_argument("--data_file", default="", type=str)
|
|
|
|
parser.add_argument("--data_type", default="utf-8", type=str)
|
|
|
|
parser.add_argument("--data_type", default="utf-8", type=str)
|
|
|
|
parser.add_argument("--vocab_size", default=0, type=int)
|
|
|
|
parser.add_argument("--vocab_size", default=0, type=int) # vocab_size = 0 means auto (for char-level LM and .txt data)
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--ctx_len", default=1024, type=int)
|
|
|
|
parser.add_argument("--ctx_len", default=1024, type=int)
|
|
|
|
parser.add_argument("--epoch_steps", default=1000, type=int)
|
|
|
|
parser.add_argument("--epoch_steps", default=1000, type=int) # a mini "epoch" has xxx steps
|
|
|
|
parser.add_argument("--epoch_count", default=500, type=int)
|
|
|
|
parser.add_argument("--epoch_count", default=500, type=int)
|
|
|
|
parser.add_argument("--epoch_begin", default=0, type=int)
|
|
|
|
parser.add_argument("--epoch_begin", default=0, type=int)
|
|
|
|
parser.add_argument("--epoch_save", default=5, type=int)
|
|
|
|
parser.add_argument("--epoch_save", default=5, type=int)
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--micro_bsz", default=12, type=int)
|
|
|
|
parser.add_argument("--micro_bsz", default=12, type=int) # micro batch size (batch size per GPU)
|
|
|
|
parser.add_argument("--n_layer", default=6, type=int)
|
|
|
|
parser.add_argument("--n_layer", default=6, type=int)
|
|
|
|
parser.add_argument("--n_embd", default=512, type=int)
|
|
|
|
parser.add_argument("--n_embd", default=512, type=int)
|
|
|
|
parser.add_argument("--pre_ffn", default=0, type=int)
|
|
|
|
parser.add_argument("--pre_ffn", default=0, type=int)
|
|
|
|
@ -53,17 +82,15 @@ if __name__ == "__main__":
|
|
|
|
parser.add_argument("--beta2", default=0.99, type=float)
|
|
|
|
parser.add_argument("--beta2", default=0.99, type=float)
|
|
|
|
parser.add_argument("--adam_eps", default=1e-8, type=float)
|
|
|
|
parser.add_argument("--adam_eps", default=1e-8, type=float)
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--grad_cp", default=0, type=int)
|
|
|
|
parser.add_argument("--grad_cp", default=0, type=int) # gradient checkpt: saves VRAM, but slower
|
|
|
|
parser.add_argument("--data_workers", default=1, type=int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
|
|
|
|
args.enable_checkpointing = False
|
|
|
|
args.enable_checkpointing = False
|
|
|
|
args.logger = False
|
|
|
|
args.logger = False
|
|
|
|
args.gradient_clip_val = 1.0
|
|
|
|
args.gradient_clip_val = 1.0
|
|
|
|
args.num_sanity_val_steps = 0
|
|
|
|
args.num_sanity_val_steps = 0
|
|
|
|
args.check_val_every_n_epoch = int(1e20)
|
|
|
|
args.check_val_every_n_epoch = int(1e20)
|
|
|
|
args.auto_select_gpus = True
|
|
|
|
|
|
|
|
args.log_every_n_steps = int(1e20)
|
|
|
|
args.log_every_n_steps = int(1e20)
|
|
|
|
args.max_epochs = -1 # continue forever
|
|
|
|
args.max_epochs = -1 # continue forever
|
|
|
|
args.betas = (args.beta1, args.beta2)
|
|
|
|
args.betas = (args.beta1, args.beta2)
|
|
|
|
@ -74,7 +101,7 @@ if __name__ == "__main__":
|
|
|
|
f"""
|
|
|
|
f"""
|
|
|
|
############################################################################
|
|
|
|
############################################################################
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# RWKV-4 {args.precision.upper()} on {args.devices} x {args.accelerator.upper()} {args.strategy.upper()} {'with grad_cp' if args.grad_cp > 0 else ''}
|
|
|
|
# RWKV-4 {args.precision.upper()} on {args.devices} x {args.accelerator.upper()}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
|
|
|
|
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
|
|
|
|
#
|
|
|
|
#
|
|
|
|
@ -86,9 +113,9 @@ if __name__ == "__main__":
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, β {args.betas}, eps {args.adam_eps}
|
|
|
|
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, β {args.betas}, eps {args.adam_eps}
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# torch {torch.__version__}, recommend 1.12.1+cu116 or newer
|
|
|
|
# Found torch {torch.__version__}, recommend 1.12.1+cu116 or newer
|
|
|
|
# deepspeed {deepspeed.__version__}, recommend 0.7.2 or newer
|
|
|
|
# Found deepspeed {deepspeed.__version__}, recommend 0.7.2 or newer
|
|
|
|
# pytorch_lightning {pl.__version__}, recommend 1.7.4 or newer
|
|
|
|
# Found pytorch_lightning {pl.__version__}, recommend 1.7.4 or newer
|
|
|
|
#
|
|
|
|
#
|
|
|
|
############################################################################
|
|
|
|
############################################################################
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
@ -102,7 +129,7 @@ if __name__ == "__main__":
|
|
|
|
assert len(args.data_file) > 0
|
|
|
|
assert len(args.data_file) > 0
|
|
|
|
|
|
|
|
|
|
|
|
if args.lr_final == 0 or args.lr_init == 0:
|
|
|
|
if args.lr_final == 0 or args.lr_init == 0:
|
|
|
|
rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule.\n\n")
|
|
|
|
rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
|
|
|
|
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
|
|
|
|
os.environ["RWKV_FLOAT_MODE"] = args.precision
|
|
|
|
os.environ["RWKV_FLOAT_MODE"] = args.precision
|
|
|
|
@ -142,8 +169,15 @@ if __name__ == "__main__":
|
|
|
|
# logging
|
|
|
|
# logging
|
|
|
|
if trainer.global_rank == 0:
|
|
|
|
if trainer.global_rank == 0:
|
|
|
|
if g_step == 0:
|
|
|
|
if g_step == 0:
|
|
|
|
|
|
|
|
trainer.my_loss_sum = 0
|
|
|
|
|
|
|
|
trainer.my_loss_count = 0
|
|
|
|
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
|
|
|
|
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
|
|
|
|
trainer.my_log.write(f"NEW RUN {datetime.datetime.now()}\n{vars(self.args)}\n")
|
|
|
|
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
print(f"\n{trainer.strategy.config}\n")
|
|
|
|
|
|
|
|
trainer.my_log.write(f"{trainer.strategy.config}\n")
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
pass
|
|
|
|
trainer.my_log.flush()
|
|
|
|
trainer.my_log.flush()
|
|
|
|
if len(args.wandb) > 0:
|
|
|
|
if len(args.wandb) > 0:
|
|
|
|
print("Login to wandb...")
|
|
|
|
print("Login to wandb...")
|
|
|
|
@ -152,7 +186,7 @@ if __name__ == "__main__":
|
|
|
|
model_name = str(args.vocab_size) + "-" + str(args.ctx_len) + "-" + str(args.n_layer) + "-" + str(args.n_embd)
|
|
|
|
model_name = str(args.vocab_size) + "-" + str(args.ctx_len) + "-" + str(args.n_layer) + "-" + str(args.n_embd)
|
|
|
|
wandb.init(
|
|
|
|
wandb.init(
|
|
|
|
project=args.wandb,
|
|
|
|
project=args.wandb,
|
|
|
|
name=model_name + "-" + datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S"),
|
|
|
|
name=model_name + "-" + args.my_timestamp,
|
|
|
|
config=args,
|
|
|
|
config=args,
|
|
|
|
save_code=False,
|
|
|
|
save_code=False,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
@ -198,6 +232,9 @@ if __name__ == "__main__":
|
|
|
|
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
|
|
|
|
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
|
|
|
|
trainer.my_log.flush()
|
|
|
|
trainer.my_log.flush()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer.my_loss_sum = 0
|
|
|
|
|
|
|
|
trainer.my_loss_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
@rank_zero_only
|
|
|
|
def generate_init_weight(model, temp_name):
|
|
|
|
def generate_init_weight(model, temp_name):
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
@ -232,5 +269,5 @@ if __name__ == "__main__":
|
|
|
|
callbacks=[train_callback(args)],
|
|
|
|
callbacks=[train_callback(args)],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
train_loader = DataLoader(train_data, batch_size=args.micro_bsz, num_workers=args.data_workers)
|
|
|
|
train_loader = DataLoader(train_data, batch_size=args.micro_bsz, num_workers=1)
|
|
|
|
trainer.fit(model, train_loader)
|
|
|
|
trainer.fit(model, train_loader)
|
|
|
|
|