|
|
|
@ -266,7 +266,7 @@ def main():
|
|
|
|
|
|
|
|
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
|
|
|
|
x_image = x_samples_ddim
|
|
|
|
x_image = x_samples_ddim
|
|
|
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
|
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
|
|
@ -295,11 +295,6 @@ def main():
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
grid_count += 1
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# run safety checker
|
|
|
|
|
|
|
|
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
|
|
|
|
|
|
|
|
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
|
|
|
|
|
|
|
toc = time.time()
|
|
|
|
toc = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
|